K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2017

a) \(x^8+7=0\)   <=>  \(x^8=-7\) (vô lí vì x^8 >=0) => pt vô nghiệm

b)\(x^2+5=0\)  <=  > \(x^2=-5\)(vô lí vì x^2 >=0) => pt vô nghiệm

c)\(-x^2-7=0\)<=> \(-x^2=7\)<=>\(x^2=-7\)(vô lí vì x^2 >=0) => pt vô nghiệm

d)\(x^2+x^4+7=0\)<=>\(x^2+x^4=-7\)(vô lí vì x^2 >=0, x^4 >=0) => pt vô nghiệm

12 tháng 5 2017

a) do x^8 lớn hơn hoặc = 0 vs mọi x => x^8 + 7 > 0 => x^8 + 7 vô nghiệm

b) làm như câu a

c) cái này mik ko bik làm

d) Do x^2; x^4 lớn hơn hoặc = 0 vs mọi x => x^2 + x^4 + 7 > 0 => x^2 + x^4 + 7  vô nghiệm

15 tháng 10 2023

\(C=\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)-x^{64}\\ =\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)-x^{64}\\ =\left(x^8-1\right)\left(x^8+1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)-x^{64}\\ =\left(x^{16}-1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)-x^{64}\\ =\left(x^{32}-1\right)\left(x^{32}+1\right)-x^{64}\\ =\left(x^{64}-1\right)-x^{64}\\ =-1\)

Vậy đa thức ko phụ thuộc vào x

15 tháng 10 2023

\(C=(x^2-1)(x^2+1)(x^4+1)(x^8+1)(x^{16}+1)(x^{32}+1)-x^{64}\\=(x^4-1)(x^4+1)(x^8+1)(x^{16}+1)(x^{32}+1)-x^{64}\\=(x^8-1)(x^8+1)(x^{16}+1)(x^{32}+1)-x^{64}\\=(x^{16}-1)(x^{16}+1)(x^{32}+1)-x^{64}\\=(x^{32}-1)(x^{32}+1)-x^{64}\\=x^{64}-1-x^{64}\\=-1\)

⇒ Giá trị của C không phụ thuộc vào giá trị của biến

a) \(x^2+4\)

Ta có: \(x^2\ge0\) với mọi x

=> \(x^2+4\ge4>0\) với mọi x.

=> Pt vô nghiệm

b) \(10x^2+3\)

Ta có: \(x^2\ge0\) với mọi x

=> \(10x^2\ge0\) với mọi x

=> \(10x^2+3\ge3>0\) với mọi x.

=> Pt vô nghiệm.

c) Bài này đề sai nhé.

d) Bài này đề cũng sai nốt:v

18 tháng 5 2021

a, Vì x2>=0 Suy ra x2+4 sẽ lớn hơn hoặc bàng 4

Suy ra A vô ngjieemj

b, Vì x2 lớn hơn howacj bằng 0

Suy ra 10x2 lớn hơn howacj bằng 0

Suy ra 10x2+3 lớn hơn hoặc bằng 3

Suy ra vô nghiệm

`a,`

`f(x)=x^2+4x+10`

\(\text{Vì }\)\(x^2\ge0\left(\forall x\right)\)

`->`\(x^2+4x+10\ge10>0\left(\forall\text{ x}\right)\)

`->` Đa thức không có nghiệm (vô nghiệm).

`c,`

`f(x)=5x^4+x^2+` gì nữa bạn nhỉ? Mình đặt vd là 1 đi nha :v.

Vì \(x^4\ge0\text{ }\forall\text{ }x\rightarrow5x^4\ge0\text{ }\forall\text{ }x\)

    \(x^2\ge0\text{ }\forall\text{ }x\)

`->`\(5x^4+x^2+1\ge1>0\text{ }\forall\text{ }x\)

`->` Đa thức vô nghiệm.

`b,`

`g(x)=x^2-2x+2017`

Vì \(x^2\ge0\text{ }\forall\text{ }x\)

`->`\(x^2-2x+2017\ge2017\text{ }\forall\text{ }x\)

`->` Đa thức vô nghiệm.

`d,`

`g(x)=4x^2004+x^2018+1`

Vì \(x^{2004}\ge0\text{ }\forall\text{ }x\rightarrow4x^{2004}\ge0\text{ }\forall\text{ }x\)

    \(x^{2018}\ge0\text{ }\forall\text{ }x\)

`->`\(4x^{2004}+x^{2018}+1\ge1>0\text{ }\forall\text{ }x\)

`->` Đa thức vô nghiệm.

10 tháng 4 2023

cảm ơn bn nha

 

8 tháng 4 2022

Mũ chẵn lớn hơn bằng 0 mà cộng thêm 1 số không âm nữa nên các đa thức trên luôn lớn hơn 0

a: Vì \(x^2+1>0\forall x\)

nên đa thức này vô nghiệm

b: \(2x^2+1>0\forall x\)

nên đa thức này vô nghiệm

c: \(x^4+2>0\forall x\)

nên đa thức này vô nghiệm

20 tháng 5 2021

Cho A(x) = 0, có:

x2 - 4x = 0

=> x (x - 4) = 0

=> x = 0 hay x - 4 = 0

=> x = 0 hay x = 4

Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)

10 tháng 1 2017

Thay x = -1 và đa thức, ta có:

(-1)2 + (-1)4 + (-1)6 + … + (-1)100 = Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Vậy giá trị đa thức bằng 50 tại x = -1.

20 tháng 5 2021

x4+x3+x+1 = x3. (x+1) + (x+1) = (x3 + 1)(x+1) = (x+1)2.(x2 - x +1) = 0

=> x + 1 = 0 => x = -1

Vì x2 - x + 1 = (x2 - 2.x .1/2 + 1/4) + 3/4 = (x - 1/2)2 + 3/4 >0 + 3/4 = 3/4

Vậy đa thức trên có nghiệm là x = -1

AH
Akai Haruma
Giáo viên
7 tháng 9 2021

Lời giải:
a.

$x^8+x^4+1=(x^4)^2+2x^4+1-x^4$
$=(x^4+1)^2-(x^2)^2=(x^4+1-x^2)(x^4+1+x^2)$

$=(x^4+1-x^2)[(x^2+1)^2-x^2]$

$=(x^4-x^2+1)(x^2+1-x)(x^2+1+x)$

b. 

$x^{12}-3x^6-1=(x^6-\frac{3}{2})^2-\frac{13}{4}$

$=(x^6-\frac{3}{2}-\frac{\sqrt{13}}{2})(x^6-\frac{3}{2}+\frac{\sqrt{13}}{2})$

c.

$3x^4+10x^2-25=(3x^4+15x^2)-(5x^2+25)$

$=3x^2(x^2+5)-5(x^2+5)=(x^2+5)(3x^2-5)$

$=(x^2+5)(\sqrt{3}x-\sqrt{5})(\sqrt{3}x+\sqrt{5})$

c.

$x^2-5y^2-y^4+2xy-9$

$=(x^2+2xy+y^2)-(y^4+6y^2+9)$
$=(x+y)^2-(y^2+3)^2$
$=(x+y+y^2+3)(x+y-y^2-3)$

 

 

7 tháng 9 2021

\(a,x^8+x^4+1\\ =\left(x^8+2x^4+1\right)-x^4\\ =\left(x^4+1\right)^2-x^4\\ =\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\\ b,x^{12}-3x^6-1\\ =\left(x^{12}-2x^6+1\right)-x^6-2\\ =\left(x^6-1\right)^2-x^6-2\\ =\left(x^6-x^3-1\right)\left(x^6+x^3-1\right)-2???\\ c,3x^4+10x^2-25\\ =4x^4-\left(x^4-10x^2+25\right)\\ =4x^4-\left(x^2-5\right)^2\\ =\left(2x^2-x^2+5\right)\left(2x^2+x^2-5\right)\\ =\left(x^2+5\right)\left(3x^2-5\right)\\ d,x^2-5y^2-y^4+2xy-9\\ =\left(x^2+2xy+y^2\right)-\left(y^4+6y^2+9\right)\\ =\left(x+y\right)^2-\left(y^2+3\right)^2\\ =\left(x+y+y^2+3\right)\left(x+y-y^2-3\right)\)

21 tháng 5 2021

`M(x)=P(x)+Q(x)`

`=x^4-5x+2x^2+1+5x+x^2+5-3x^2+x^4`

`=2x^4+6`

Đặt `M(x)=0`

`<=>2x^4+6=0`

`<=>x^4=-3`(vô lý vì `x^4>=0`)

a) Ta có M(x)=P(x)+Q(x)

                     =(\(x^4-5x+2x^2+1\))+(\(5x+x^2+5-3x^2+x^4\))

                     =\(x^4-5x+2x^2+1\)+\(5x+x^2+5-3x^2+x^4\)

                     =(\(x^4+x^4\))+(-5x+5x)+(\(2x^2\)+\(x^2\)-\(3x^2\))+(1+5)

                     =\(2x^4\)+6

Vậy M(x)=\(2x^4+6\)

b)Vì 2x\(^4\)\(\ge\) 0 với \(\forall\) x

  nên \(2x^4+6\)  \(\ge\)0 với \(\forall\)x

\(\Rightarrow\)M(x) \(\ge\) 0 với \(\forall\) x

Vậy M(x) vô nghiệm