K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2022

Mũ chẵn lớn hơn bằng 0 mà cộng thêm 1 số không âm nữa nên các đa thức trên luôn lớn hơn 0

a: Vì \(x^2+1>0\forall x\)

nên đa thức này vô nghiệm

b: \(2x^2+1>0\forall x\)

nên đa thức này vô nghiệm

c: \(x^4+2>0\forall x\)

nên đa thức này vô nghiệm

12 tháng 4 2016

bài 1:

a) C= 0

hay 3x+5+(7-x)=0

3x+(7-x)=-5

với 3x=-5

x= -5:3= \(x = { {-5} \over 3}\)

với 7-x=-5

x= 7+5= 12

=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12

mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha

12 tháng 4 2016

EM CHỊU RỒI ANH ƠI!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

12 tháng 4 2016

Đề câu a có bị sai ko

12 tháng 4 2016

a.Đặt 2x2+3=0 n  =>2x2=-3   =>x2=\(\frac{-3}{2}\)                       Vậy đa thức 2x2+3 ko có nghiệm                                                                            b,  Đặt -x4-3X2-7=0    =>                                                   

12 tháng 4 2016

a, Có \(2x^2\ge0\)  Vx

\(2x^2+3\ge3>0\) Vx

=> 2x2+3 ko có nghiệm

b, Có \(-x^4\le0\)  Vx

\(-3x^2\le0\)  Vx

=> -x4-3x2-7 \(\le\)  7 <0 Vx

=> -x4-3x2-7 ko có nghiệm

28 tháng 3 2018

a) Sắp xếp các hạng tử của đa thức M(x) theo lũy thừa giảm của biến

M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1

=x4+2x2+1

b) M(1)=14+2.12+1=4

M(−1)=(−1)4+2.(−1)2+1=4

c) Ta có: M(x)=x4+2x2+1

Vì giá trị của x4 và 2x2 luôn lớn hơn hay bằng 0 với mọi x nên x4 +2x2 +1 > 0  với mọi x tức là M(x) ≠ 0 với mọi x. Vậy M(x) không có nghiệm.

26 tháng 5 2016

A(x)  \(=x^4+2x^2+1\)

\(=x^4+x^2+x^2+1\)

\(=x^2.\left(x^2+1\right)+\left(x^2+1\right)\)

\(=\left(x^2+1\right).\left(x^2+1\right)\)

\(=\left(x^2+1\right)^2\)

Mà \(x^2+1\ge1\) => \(\left(x^2+1\right)^2\ge1^2\)

Vậy đa thức vô nghiệm.

 

26 tháng 5 2016

A(x) = x^4 + 2x^2 + 1

vì \(x^4\ge0\) với mọi x

\(2x^2\ge0\) với mọi x

\(\Rightarrow x^4+2x^2+1\ge1>0\)

=> đa thức A(x) không có nghiệm

13 tháng 6 2017

Câu 1:

a, Ta có: \(x^2-2x=0\)

\(\Rightarrow x\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy x = 0 hoặc x = 2 là nghiệm của \(x^2-2x\)

b, Ta có: \(x^3-3x=0\)

\(\Rightarrow x\left(x^2-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{3}\end{matrix}\right.\)

Vậy \(x=0;x=\sqrt{3}\) là nghiệm của \(x^3-3x\)

Câu 2:

a, Ta có: \(x^4+2x^2+1=\left(x^2+1\right)^2\)

Ta thấy: \(x^2+1\ge1\)

\(\Rightarrow\left(x^2+1\right)^2\ge1>0\)

\(\Rightarrow x^4+2x^2+1\) vô nghiệm

Vậy đa thức \(x^4+2x^2+1\) không có nghiệm

b, Ta có: \(x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\)

Ta thấy \(\left(x+1\right)^2+2\ge2>0\)

\(\Rightarrow x^2+2x+3\) vô nghiệm

Vậy \(x^2+2x+3\) không có nghiệm

c, \(x^2+6x+10=x^2+6x+9+1=\left(x+3\right)^2+1\)

Ta có: \(\left(x+3\right)^2+1\ge1>0\)

\(\Rightarrow x^2+6x+10\) vô nghiệm

Vậy đa thức \(x^2+6x+10\) không có nghiệm

13 tháng 6 2017

Bài 1:

a/Ta có: \(x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\Rightarrow x=2\end{matrix}\right.\)

b/Có: \(x^3-3x=0\)

\(\Leftrightarrow x\left(x^2-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-3=0\Rightarrow x^2=3\Rightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\end{matrix}\right.\)

Bài 2:

a/ \(x^4+2x^2+1\) \(=\left(x^2\right)^2+2x^2\cdot1+1^2=\left(x^2+1\right)^2\)

\(Vì\) \(x^2\ge0\forall x\Rightarrow x^2+1>0\)

\(\Rightarrow\left(x^2+1\right)^2>0\) => Đa thức vô nghiệm (đpcm)

b/ \(x^2+2x+3=x^2+2x\cdot1+1+2=\left(x+1\right)^2+2\)

Có: \(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+2\ge2>0\)

=> đa thức vô nghiệm (đpcm)

c/ \(x^2+6x+10=x^2+2\cdot x\cdot3+9+1=\left(x+3\right)^2+1\)

Có: \(\left(x+3\right)^2\ge0\forall x\Rightarrow\left(x+3\right)^2+1\ge1>0\)

=> đa thức vô nghiệm (đpcm)

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2  a) Xác định đa thức P(x) và Q(x)  b) Tìm nghiệm của đa thức P(x) và Q(x)  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1...
Đọc tiếp

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
  a) Xác định đa thức P(x) và Q(x)
  b) Tìm nghiệm của đa thức P(x) và Q(x)
  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
   a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
   b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
   c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
   a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
   b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a} \)

1
7 tháng 4 2018

pan a ban giong bup be lam nhung bup be lam = nhua deo va no del co nao nhe

17 tháng 4 2018

a, \(A\left(x\right)=\left(2x+3\right)^2+\left|x-7\right|\) 

Vì \(\hept{\begin{cases}\left(2x+3\right)\ge0\\\left|x-7\right|\ge0\end{cases}}\) => A(x)=0 <=> \(\hept{\begin{cases}2x+3=0\\x-7=7\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{3}{2}\\x=7\end{cases}}\)   ( Không xảy ra )

=> A(x) vô nghiệm.

b, \(B\left(x\right)=x^2-2x.5+25+1993=\left(x-5\right)^2+1993\ge1993>0\)

Nên B(x) vô nghiệm 

c, \(C\left(x\right)=x^2+2x\cdot\frac{3}{2}+\frac{9}{4}+\frac{11}{4}=\left(x+\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\)

Nên C(x) vô nghiệm

18 tháng 4 2018

a/ \(A\left(x\right)=\left(2x+3\right)^2+\left|x-7\right|\)

Ta có \(\left(2x+3\right)^2\ge0\)với mọi giá trị của x

\(\left|x-7\right|\ge0\)với mọi giá trị của x

=> \(\left(2x+3\right)^2+\left|x-7\right|\ge0\)với mọi giá trị của x

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}2x+3=0\\x-7=0\end{cases}}\)=> \(\hept{\begin{cases}2x=3\\x=7\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{3}{2}\\x=7\end{cases}}\)(loại)

Vậy A (x) vô nghiệm