cho tam giác ABC cân tại A. gọi I là giao điểm thuộc cạnh BC sao cho BI=BA và H là trung diểm cuả AI.tia BH cắt AC tại E. tia IE cắt tia BA tại M. cm rằng
a)tam giác ABH= am giác IBH
b)tam giácAEI cân
c) EM lớn hơn EI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABI có:
- BA = BI, suy ra ΔABI cân tại B
- BH là đường trung tuyến đáy AI của ΔABI (do H là trung điểm của AI)
Suy ra BH cũng là đường cao, cũng là đường trung trực của ΔABI.
Khi đó ΔABH & ΔIBH đều vuông tại H. Hai tam giác này có BH là cạnh chung và BA = BI (giả thuyết) nên ΔABH = ΔIBH (cạnh huyền - cạnh góc vuông).
b) Vì BH là đường trung trực của ΔABI (chứng minh trên) và E thuộc BH nên EA = EI. Suy ra ΔAEI cân.
a: Xét ΔBAI và ΔBDI có
BA=BD
AI=DI
BI chung
=>ΔBAI=ΔBDI
b:
ΔBAI=ΔBDI
=>góc ABI=góc DBI
=>góc ABE=góc DBE
Xét ΔBAE và ΔBDE có
BE chung
góc ABE=góc DBE
BA=BD
Do đó; ΔBAE=ΔBDE
=>EA=ED và góc BDE=góc BAE
=>ΔEAD cân tại E và góc BDE=90 độ
c: EA=ED
EA<EF
Do đó: ED<EF
a: ΔBAD cân tại B
mà BH là trung tuyến
nên BH vuông góc AD
Xet ΔEAD có
EH vừa là đường cao, vừa là trung tuyến
=>ΔEAD cân tại E
b: EA=ED
mà EA<EM
nên ED<EM
a: ΔBAD cân tại B
mà BH là trung tuyến
nên BH là phân giác của góc ABD
Xét ΔBAE và ΔBDE có
BA=BD
góc ABE=góc DBE
BE chung
=>ΔBAE=ΔBDE
=>EA=ED
b: EA=ED
mà EA<EM
nên ED<EM
a: ΔBAD cân tại B
mà BH là trung tuyến
nên BH là phân giác của góc ABD
Xét ΔBAE và ΔBDE có
BA=BD
góc ABE=góc DBE
BE chung
=>ΔBAE=ΔBDE
=>EA=ED
b: EA=ED
mà EA<EM
nên ED<EM