K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

Đặt A = 1.2.3 + 2.3.4 + 3.4.5 +...+ (n - 1)n(n + 1)

4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +...+ (n - 1)n(n + 1).4

4A = 1.2.3.(4 - 0) + 2.3.4.(5 - 1) + 3.4.5.(6 - 2) +....+ (n - 1)n(n + 1).[(n + 2) - (n - 2)]

4A = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 +...+ (n - 1)n(n + 1)(n + 2) - (n - 2)(n - 1)n(n + 1)

4A = [1.2.3.4 + 2.3.4.5 + 3.4.5.6 +....+ (n - 1)n(n + 1)(n + 2)] - [0.1.2.3 + 1.2.3.4 + 2.3.4.5 + (n - 2)(n - 1)n(n + 1)]

4A = (n - 1)n(n + 1)(n + 2) - 0.1.2.3

4A = (n - 1)n(n + 1)(n + 2)

=> A = \(\frac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)

Đặt \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)

Ta có: \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)

\(\Leftrightarrow2A=\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\dfrac{2}{3\cdot4\cdot5}+...+\dfrac{2}{98\cdot99\cdot100}\)

\(\Leftrightarrow2A=-\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}-\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}-\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}-\dfrac{1}{4\cdot5}+...-\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\)

\(\Leftrightarrow2A=-\dfrac{1}{2}+\dfrac{1}{99\cdot100}\)

\(\Leftrightarrow2A=\dfrac{-1}{2}+\dfrac{1}{9900}\)

\(\Leftrightarrow2A=\dfrac{-4950}{9900}+\dfrac{1}{9900}=\dfrac{-4949}{9900}\)

hay \(A=\dfrac{-4949}{19800}\)

24 tháng 3 2022

Ta có:

\(A=\frac{1}{1\text{x}2\text{x}3}+\frac{1}{2\text{x}3\text{x}4}+\frac{1}{3\text{x}4\text{x}5}+...+\frac{1}{18\text{x}19\text{x}20}< \frac{1}{4}\)

\(A=1-\frac{1}{2}-\frac{1}{3}+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{20}< \frac{1}{4}\)

\(A=1+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+...+\frac{1}{20}< \frac{1}{4}\)

\(A=1+\frac{1}{20}< \frac{1}{4}\)

\(A=\frac{19}{20}< \frac{1}{4}\)

\(A=\frac{19}{20}< \frac{5}{20}\)

\(A>\frac{1}{4}\)

20 tháng 10

Cyak 3ampo

1 tháng 4 2022

úp tui giúp tui

7 tháng 4 2015

=1/2-1/3-1/4+1/3-1/4-1/5+1/5-1/6-1/7+...+1/35-1/36-1/37

giao hoán, kết hợp là ra nha

17 tháng 11 2018

Đặt \(A=\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{30\times31\times32}\)

\(2A=\frac{2}{1\times2\times3}+\frac{2}{2\times3\times4}+\frac{2}{3\times4\times5}+...+\frac{2}{30\times31\times32}\)

\(=\left(\frac{1}{1\times2}-\frac{1}{2\times3}\right)+\left(\frac{1}{2\times3}-\frac{1}{3\times4}\right)+\left(\frac{1}{3\times4}-\frac{1}{4\times5}\right)+...+\left(\frac{1}{30\times31}-\frac{1}{31\times32}\right)\)

\(=\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+\frac{1}{3\times4}-\frac{1}{4\times5}+...+\frac{1}{30\times31}-\frac{1}{31\times32}\)

\(=\frac{1}{1\times2}-\frac{1}{31\times32}\)

\(=\frac{1}{2}-\frac{1}{992}\)

\(=\frac{495}{992}\)

\(\Rightarrow A=\frac{495}{992}\div2=\frac{495}{1984}\)

17 tháng 11 2018

\(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{30\times31\times32}\)

\(=\frac{1}{2}\times\left(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{30\times31\times32}\right)\)

\(=\frac{1}{2}\times\left(\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+\frac{1}{3\times4}-\frac{1}{4\times5}+...+\frac{1}{30\times31}-\frac{1}{31\times32}\right)\)

\(=\frac{1}{2}\times\left(\frac{1}{1\times2}-\frac{1}{31\times32}\right)\)

\(=\frac{1}{2}\times\frac{990}{1984}\)

\(=\frac{990}{3968}=\frac{495}{1984}\)

21 tháng 9 2015

S = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2013.2014.2015}\)

S = \(\frac{1}{2}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+....+\frac{2015-2013}{2013.2014.2015}\right)\)

S = \(\frac{1}{2}.\left(\frac{3}{1.2.3}-\frac{1}{1.2.3}+\frac{4}{2.3.4}-\frac{2}{2.3.4}+...+\frac{2015}{2013.2014.2015}-\frac{2013}{2013.2014.2015}\right)\)

S = \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2013.2014}-\frac{1}{2014.2015}\right)\)

S = \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2014.2015}\right)\)

S = \(\frac{1}{2}.\frac{2029104}{4058210}\)

S = \(\frac{1014552}{4058210}\)

17 tháng 5 2022

`A=1/[1xx2xx3]+1/[2xx3xx4]+1/[3xx4xx5]+....+1/[98xx99xx100]`

`A=1/2xx(2/[1xx2xx3]+2/[2xx3xx4]+2/[3xx4xx5]+....+2/[98xx99xx100])`

`A=1/2xx(1/[1xx2]-1/[2xx3]+1/[2xx3]-1/[3xx4]+1/[3xx4]-1/[4xx5]+....+1/[98xx99]-1/[99xx100])`

`A=1/2xx(1/[1xx2]-1/[99xx100])`

`A=1/2xx(1/2-1/9900)`

`A=1/2xx(4950/9900-1/9900)`

`A=1/2xx4949/9900`

`A=4949/19800`

17 tháng 5 2022

 

\(A=\dfrac{3-1}{1.2.3}+\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}\)

\(A=\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right):2\)

\(A=\left(\dfrac{1}{2}-\dfrac{1}{6}+\dfrac{1}{12}-\dfrac{1}{20}+...+\dfrac{1}{9702}-\dfrac{1}{990}\right):2\)

\(A=\left(\dfrac{1}{2}-\dfrac{1}{990}\right):2\)

\(A=\dfrac{4949}{9900}:2\)

\(A=\dfrac{4949}{19800}\)