Câu 2. Cho tập hợp $A=\left\{ 1;\,\,2;\,\,3;...;\,\,90 \right\}$. Chọn từ $A$ hai tập con phân biệt gồm hai phần tử $\left\{ a,\,\,b \right\}$, $\left\{ c,\,\,d \right\}.$ Tính xác suất để cho trung bình cộng của các phần tử trong mỗi tập đều bằng $30$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:C
Câu 2:D
Câu 3:B
Câu 4:B
Câu 5:D
Câu 6:D
TRẮC NGHIỆM
Bài 1:
a) \(B=\left\{C;A;H;M;N;G;T\right\}\)
b) \(C=\left\{0;1;2;3;4;5;6;7;8;9\right\}\)
c) \(D=\left\{15;25;35;45;65;75;85;95\right\}\)
Bài 2:
Cách 1: \(A=\left\{0;1;2;3;4;5;6\right\}\)
Cách 2: \(A=\left\{x\in N/x\le6\right\}\)
Bài 3:
a) \(A=\left\{30;31;32;...;100\right\}\)
Số phần tử của tập hợp A là
\(\left(100-30\right)\div1+1=71\)(phần tử)
\(B=\left\{10;12;14;...;98\right\}\)
Số phần tử của tập hợp B là
\(\left(98-10\right)\div2+1=45\)(phần tử)
b) Ko rõ đề bài
2
a ){1} ; {2} ; {a} ;{b}
b) {1;2} ; { 1; a} ; { 1; b} ; { 2;a } ; {2 ;b} ; { a;b}
c) Tập hợp { a,b,c} có là tập hợp con của A
3
B có số tập con là :
2 x2 x 2 = 8 tập hợp con
\(\left\{1\right\};\left\{a\right\};\left\{b\right\};\left\{2\right\}\)
Các tập hợp con của A là:
{1};{a}; {b}; {2}; {1;a}; {1;b}; {1;2}; {a;b}; {a;2}; {b;2}; {1;a;b}; {a;b;2}
1.A có 8 phần tử đó là các phần tử 0;1;2;3;4;5;6;7, 3 số \(\notin\)A là -1;-2;-3
1/ B={x ∈ R| (9-x2)(x2-3x+2)=0}
Ta có:
(9-x2)(x2-3x+2)=0
⇔\(\left[{}\begin{matrix}9-x^2=0\\x^2-3x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(3+x\right)\left(3-x\right)=0\\\left(x^2-x\right)-\left(2x-2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x\left(x-1\right)-2\left(x-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\\left(x-1\right)\left(x-2\right)=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x=1\\x=2\end{matrix}\right.\)
⇒B={-3;1;2;3}
2/ Có 15 tập hợp con có 2 phần tử
6:
n(n+1)=6
=>n^2+n-6=0
=>(n+3)(n-2)=0
=>n=-3(loại) hoặc n=2(nhận)
4:
Ư(36)={1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36}
=>A có 18 phần tử
1:
Ư(100)={1;-1;2;-2;4;-4;5;-5;10;-10;20;-20;25;-25;50;-50;100;-100}
3: 10;50;25
Câu 1:
\(Ư\left(100\right)=\left\{1;2;4;5;10;25;50;100\right\}\)
Câu 2:
Gọi tập hợp đó là A:
\(A=\left\{0;30;60;90;120;150;...;990\right\}\)
Câu 3:
Gọi tập hợp đó là B:
\(B=\left\{10;25;50\right\}\)
Gọi T là biến cố "Trung bình cộng của các phần tử trong mỗi tập đều bằng 30." Biến cố này tương đương với biến cố "Tổng các phần tử trong mỗi tập đều bằng 60."
Gọi A và B lần lượt là các biến cố "Tổng của các phần tử trong tập thứ nhất bằng 60." và "Tổng của các phần tử trong tập thứ hai bằng 60."
Số các cặp \(\left(i,j\right)\) sao cho \(i\ne j;i,j\in A\) là \(C^2_{90}=4005\). Ta liệt kê các kết quả thuận lợi cho A:
\(X=\left\{\left(1;59\right);\left(2;58\right);\left(3;57\right);...;\left(29;31\right)\right\}\) (có 29 phần tử). Vậy \(P\left(A\right)=\dfrac{29}{4005}\). Khi đó \(P\left(B\right)=\dfrac{28}{4004}=\dfrac{1}{143}\). Do đó \(P\left(T\right)=P\left(AB\right)=P\left(A\right).P\left(B\right)=\dfrac{29}{4005}.\dfrac{1}{143}=\dfrac{29}{572715}\).
Vậy xác suất để trung bình cộng của các phần tử trong mỗi tập đều bằng 30 là \(\dfrac{29}{572715}\)