Tính bằng cách hợp lí nhất:
3/8 + 9/2 x 12/16 - 9/4 : 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{4^{10}.9^6+3^{12}.8^5}{6^{13}.4-2^{16}.3^{12}}\)
\(=\dfrac{\left(2^2\right)^{10}.\left(3^2\right)^6+3^{12}.\left(2^3\right)^5}{\left(2.3\right)^{13}.2^2-2^{16}.3^{12}}\)
\(=\dfrac{2^{20}.3^{12}+3^{12}.2^{15}}{2^{13}.3^{13}.2^2-2^{16}.3^{12}}\)
\(=\dfrac{2^{20}.3^{12}+3^{12}.2^{15}}{2^{15}.3^{13}-2^{16}.3^{12}}\)
\(=\dfrac{2^{15}.3^{12}.\left(2^5+1\right)}{2^{15}.3^{13}.\left(3-2\right)}\)
\(=\dfrac{2^5+1}{3-2}\)
\(=\dfrac{32+1}{1}=33\)
\(\frac{4^{10}.9^6+3^{12}.8^5}{6^{13}.4-2^{16}.3^{12}}\)
\(=\frac{\left(2^2\right)^{10}.\left(3^2\right)^6+3^{12}.\left(2^3\right)^5}{\left(2.3\right)^{13}.2^2-2^{16}.3^{12}}\)
\(=\frac{2^{20}.3^{12}+3^{12}.2^{15}}{2^{13}.3^{13}.2^2-2^{16}.3^{12}}\)
\(=\frac{2^{20}.3^{12}+3^{12}.2^{15}}{2^{15}.3^{12}.3-3^{12}.2^{16}}\)
\(=\frac{2^4}{3}\)
\(\frac{5}{8}+\frac{2}{9}-\frac{2}{5}+\frac{3}{8}+\frac{4}{9}+\frac{1}{3}-\frac{3}{5}\)
\(=\frac{5}{8}+\frac{2}{9}-\frac{2}{5}+\frac{3}{8}+\frac{4}{9}+\frac{3}{9}-\frac{3}{5}\)
\(=\left(\frac{5}{8}+\frac{3}{8}\right)+\left(\frac{2}{9}+\frac{4}{9}+\frac{3}{9}\right)-\left(\frac{2}{5}+\frac{3}{5}\right)\)
\(=\frac{8}{8}+\frac{9}{9}-\frac{5}{5}\)
\(=1+1-1\)
\(=2-1\)
\(=1\)
`5`
`a, -7/21 +(1+1/3)`
`=-7/21 + ( 3/3 + 1/3)`
`=-7/21+ 4/3`
`=-7/21+ 28/21`
`= 21/21`
`=1`
`b, 2/15 + ( 5/9 + (-6)/9)`
`= 2/15 + (-1/9)`
`= 1/45`
`c, (9-1/5+3/12) +(-3/4)`
`= ( 45/5-1/5 + 3/12)+(-3/4)`
`= ( 44/5 + 3/12)+(-3/4)`
`= 9,05 +(-0,75)`
`=8,3`
`6`
`x+7/8 =13/12`
`=>x= 13/12 -7/8`
`=>x=5/24`
`-------`
`-(-6)/12 -x=9/48`
`=> 6/12 -x=9/48`
`=>x= 6/12-9/48`
`=>x=5/16`
`---------`
`x+4/6 =5/25 -(-7)/15`
`=>x+4/6 =1/5 + 7/15`
`=> x+ 4/6=10/15`
`=>x=10/15 -4/6`
`=>x=0`
`----------`
`x+4/5 = 6/20 -(-7)/3`
`=>x+4/5 = 6/20 +7/3`
`=>x+4/5 = 79/30`
`=>x=79/30 -4/5`
`=>x= 79/30-24/30`
`=>x= 55/30`
`=>x= 11/6`
\(5)\)
\(A=\dfrac{-7}{21}+\left(1+\dfrac{1}{3}\right)\)
\(A=\dfrac{-7}{21}+\dfrac{4}{3}\)
\(A=\dfrac{-7}{21}+\dfrac{28}{21}\)
\(A=1\)
\(--------------\)
\(B=\dfrac{2}{15}+\left(\dfrac{5}{9}+\dfrac{-6}{9}\right)\)
\(B=\dfrac{2}{15}+\dfrac{-1}{9}\)
\(B=\dfrac{18}{135}+\dfrac{-15}{135}\)
\(B=\dfrac{1}{45}\)
\(------------\)
\(C=9-\dfrac{1}{5}+\dfrac{3}{12}+\dfrac{-3}{4}\)
\(C=\dfrac{44}{5}+\dfrac{3}{12}+\dfrac{-3}{4}\)
\(C=\dfrac{528}{60}+\dfrac{15}{60}+\dfrac{-3}{4}\)
\(C=\dfrac{181}{20}+\dfrac{-3}{4}\)
\(C=\dfrac{181}{20}+\dfrac{-15}{20}\)
\(C=\dfrac{83}{10}\)
\(6)\)
\(a)\) \(x+\dfrac{7}{8}=\dfrac{13}{12}\)
\(x=\dfrac{13}{12}-\dfrac{7}{8}\)
\(x=\dfrac{104}{96}-\dfrac{84}{96}\)
\(x=\dfrac{5}{24}\)
\(b)\) \(\dfrac{-6}{12}-x=\dfrac{9}{48}\)
\(\dfrac{-1}{2}-x=\dfrac{3}{16}\)
\(x=\dfrac{-1}{2}-\dfrac{3}{16}\)
\(x=\dfrac{-8}{16}-\dfrac{3}{16}\)
\(x=\dfrac{-11}{16}\)
\(c)\) \(x+\dfrac{4}{6}=\dfrac{5}{25}-\left(-\dfrac{7}{15}\right)\)
\(x+\dfrac{4}{6}=\dfrac{5}{25}+\dfrac{7}{15}\)
\(x+\dfrac{4}{6}=\dfrac{75}{375}+\dfrac{105}{375}\)
\(x+\dfrac{4}{6}=\dfrac{12}{25}\)
\(x=\dfrac{12}{25}-\dfrac{4}{6}\)
\(x=\dfrac{72}{150}-\dfrac{100}{150}\)
\(x=\dfrac{-14}{75}\)
\(d)\) \(x+\dfrac{4}{5}=\dfrac{6}{20}-\left(-\dfrac{7}{3}\right)\)
\(x+\dfrac{4}{5}=\dfrac{6}{20}+\dfrac{7}{3}\)
\(x+\dfrac{4}{5}=\dfrac{18}{60}+\dfrac{140}{60}\)
\(x+\dfrac{4}{5}=\dfrac{79}{30}\)
\(x=\dfrac{79}{30}-\dfrac{4}{5}\)
\(x=\dfrac{79}{30}-\dfrac{24}{30}\)
\(x=\dfrac{11}{6}\)
a)
Vì 2/9=6/27=8/36=12/54=16/72=18/81 nên:
2/9+6/27+8/36+12/54+16/72+18/81=
2/9+2/9+2/9+2/9+2/9+2/9=
2/9*6=
12/9=
4/3
Vậy 2/9+6/27+8/36+12/54+16/72+18/81=4/3
b)
Ta có:
1-2/5=3/5
1-2/7=5/7
1-2/9=7/9
...
1-2/99=97/99
Vậy (1-2/5)*(1-2/7)*(1-2/9)*...*(1-2/99)=
3/5*5/7*7/9*...*97/99=
(3*5*7*...*97)/(5*7*9*...*99)=
3/99=
1/33
Vậy (1-2/5)*(1-2/7)*(1-2/9)*...*(1-2/99)=1/33
c)
Gọi biểu thức 1/2+1/4+1/8+1/16+...+1/1024 là S,ta có:
S=1/2+1/4+1/8+1/16+...+1/1024
S*2=1+1/2+1/4+1/8+...+1/512
S*2-S=(1+1/2+1/4+1/8+...+1/512)-(1/2+1/4+1/8+1/16+...+1/1024)
S=1-1/1024
S=1023/1024
Vậy 1/2+1/4+1/8+1/16+...+1/1024=1023/1024
a) \(A=\left\{x\in N|0\le x\le4\right\}\)
b) \(B=\left\{x\in N|x=4k;0\le k\le4;k\in N\right\}\)
c) \(C=\left\{x\in Z|x=\left(-3\right)^k;1\le k\le4;k\in N\right\}\)
d) \(D=\left\{x\in N|x=k^2;k=3a;1\le a\le4;a\in N\right\}\)
\(\dfrac{3}{8}+\dfrac{9}{2}\times\dfrac{12}{16}-\dfrac{9}{4}:3\)
= \(\dfrac{3}{4}\times\dfrac{1}{2}+\dfrac{9}{2}\times\dfrac{3}{4}-\dfrac{3}{4}\times3:3\)
= \(\dfrac{3}{4}\times\dfrac{1}{2}+\dfrac{9}{2}\times\dfrac{3}{4}-\dfrac{3}{4}\times1\)
= \(\dfrac{3}{4}\times\left(\dfrac{1}{2}+\dfrac{9}{2}-1\right)\)
= \(\dfrac{3}{4}\times\left(5-1\right)\)
= \(\dfrac{3}{4}\times4\)
= 3