cho hình chóp sabcd có đáy ABCD là hình vuông cạnh a. Hình chiếu của S vuông góc (ABCD) là trung điểm H của AB. Góc tạo bởi SC và (ABCD) là 60 độ.
a) Tính khoảng cách từ điểm H đến (SCD)
b )Điểm H đến (SBC)
Giúp mình vớii
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Ta có d(K;(SCD))
Ta có
Có góc giữa SC và đáy là nên ta có
Ta có
a) Dễ dàng chứng minh tam giác ABC và ACD đều
Suy ra AC=a, SA= AC.tan(gócSCA)=a.tan(600)
\(V_{S.ABCD}=\frac{1}{3}.SA.S_{ABCD}=\frac{1}{3}.a\sqrt{3}.a^2.\frac{\sqrt{3}}{2}=\frac{a^3}{2}\)
b) Có 2 cách làm để tìm khoảng cách từ H đến mp(SCD), nhưng bạn nên chọn phương pháp tọa độ hóa cho dễ
Chọn A làm gốc tọa độ , các tia AD, AI, AS lần lượt trùng tia Ax, Ay, Az
Có ngay tọa độ các điểm \(S\left(0;0;a\sqrt{3}\right)\) , \(D\left(a;0;0\right)\) , \(I\left(0;\frac{a\sqrt{3}}{2};0\right)\)
\(\Rightarrow C\left(\frac{a}{2};\frac{a\sqrt{3}}{2};0\right)\)
theo số liệu đã cho, dễ xác định được điểm H chia đoạn SI với tỷ lệ 2:1
\(\Rightarrow H\left(0;\frac{a}{\sqrt{3}};\frac{a}{\sqrt{3}}\right)\)
Bây giờ chỉ cần viết pt (SCD) là tính được ngay khoảng cách từ H đến SCD
\(\left(SCD\right):\sqrt{3}x+y+z-\sqrt{3}=0\)
\(d\left(H\text{/}\left(SCD\right)\right)=\frac{a\sqrt{3}}{\sqrt{5}}\)
Bạn ơi bạn chỉ mình cách bình thường được ko? Vì mình chưa học tọa độ hóa.
Đáp án C
Gọi M là trung điểm của CD. Kẻ HK vuông góc với SM.
Ta có: C D ⊥ H M C D ⊥ S H ⇒ C D ⊥ ( S H M ) ⇒ ⊥ H K
Mặt khác ta có H K ⊥ S M
Suy ra H K ⊥ ( S C D )
Vậy d ( A , ( S C D ) ) = D ( H , ( S C D ) ) = H K
Xét tam giác BHC vuông tại B, ta có:
H C = B H 2 + B C 2 = a 2 ⇒ S H = H C = a 2
Xét tam giác SHM vuông tại H, ta có:
1 H K 2 = 1 S H 2 + 1 M H 2 = 1 2 a 2 + 1 a 2 = 3 2 a 2 ⇒ H K = a 6 3
Đáp án C
Gọi M là trung điểm của CD. Kẻ HK vuông góc với SM.
Ta có: C D ⊥ H M C D ⊥ S H ⇒ C D ⊥ ( S H M ) ⇒ ⊥ H K
Mặt khác ta có H K ⊥ ( S C D )
Suy ra H K ⊥ ( S C D )
Vậy d ( A , ( S C D ) ) = D ( H , ( S C D ) ) = H K
Xét tam giác BHC vuông tại B, ta có:
H C = B H 2 + B C 2 = a 2 ⇒ S H = H C = a 2
Xét tam giác SHM vuông tại H, ta có:
1 H K 2 = 1 S H 2 + 1 M H 2 = 1 2 a 2 + 1 a 2 = 3 2 a 2 ⇒ H K = a 6 3
Đáp án B
d K , S C D = 1 2 d H , S C D = 1 2 H F .
A H = 1 3 A B = 1 3 a ; B H = 2 3 A B = 2 3 a
C H = B H 2 + B C 2 = 13 3 a .
C ó g ó c g i ữ a S C v à đ á y l à 60 ° n ê n t a c ó
S C H ^ = 60 0 ⇒ S H = tan 60 0 . C H = 39 3 a
ta có 1 H F 2 = 1 H E 2 + 1 A H 2 ⇒ H F = 13 4 a
Đáp án C
Phương pháp:
+) d(A;(SCD)) = d(H;(SCD)) xác định khoảng cách từ H đến (SCD).
+) Xác định góc giữa SC và mặt đáy.
+) Đặt cạnh của hình vuông ở đáy là x, tính SH và HI theo x.
+) Sử dụng hệ thức lượng trong tam giác vuông để tìm x.
Cách giải:
Giả sử độ dài cạnh hình vuông ở đáy là x. Khi đó, HI = x
Cho mình hỏi, cái chỗ tính HI không dùng cách này được hả bạn \(\dfrac{SH.HC}{\sqrt{SH^2+HC^2}}\)
Nếu không dùng được, bạn lí giải giùm mình với