K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2019

Đáp án C

Phương pháp:

+) d(A;(SCD)) = d(H;(SCD)) xác định khoảng cách từ H đến (SCD).

+) Xác định góc giữa SC và mặt đáy.

+) Đặt cạnh của hình vuông ở đáy là x, tính SH và HI theo x.

 

+) Sử dụng hệ thức lượng trong tam giác vuông để tìm x.

Cách giải:


 

Giả sử độ dài cạnh hình vuông ở đáy là x. Khi đó, HI = x

6 tháng 12 2019

18 tháng 12 2016

a) Dễ dàng chứng minh tam giác ABC và ACD đều

Suy ra AC=a, SA= AC.tan(gócSCA)=a.tan(600)

\(V_{S.ABCD}=\frac{1}{3}.SA.S_{ABCD}=\frac{1}{3}.a\sqrt{3}.a^2.\frac{\sqrt{3}}{2}=\frac{a^3}{2}\)

b) Có 2 cách làm để tìm khoảng cách từ H đến mp(SCD), nhưng bạn nên chọn phương pháp tọa độ hóa cho dễ

Chọn A làm gốc tọa độ , các tia AD, AI, AS lần lượt trùng tia Ax, Ay, Az

Có ngay tọa độ các điểm \(S\left(0;0;a\sqrt{3}\right)\) , \(D\left(a;0;0\right)\) , \(I\left(0;\frac{a\sqrt{3}}{2};0\right)\)

\(\Rightarrow C\left(\frac{a}{2};\frac{a\sqrt{3}}{2};0\right)\)

theo số liệu đã cho, dễ xác định được điểm H chia đoạn SI với tỷ lệ 2:1

\(\Rightarrow H\left(0;\frac{a}{\sqrt{3}};\frac{a}{\sqrt{3}}\right)\)

Bây giờ chỉ cần viết pt (SCD) là tính được ngay khoảng cách từ H đến SCD

\(\left(SCD\right):\sqrt{3}x+y+z-\sqrt{3}=0\)

\(d\left(H\text{/}\left(SCD\right)\right)=\frac{a\sqrt{3}}{\sqrt{5}}\)

18 tháng 12 2016

Bạn ơi bạn chỉ mình cách bình thường được ko? Vì mình chưa học tọa độ hóa.

26 tháng 4 2018

Đáp án C.

24 tháng 11 2019

Chọn đáp án D.

Ta có: 

Kẻ 

Kẻ 

Xét tam giác SHI  vuông tại H:

Xét tam giác SHB vuông tại B: 

4 tháng 7 2017

25 tháng 12 2017

Đáp án C

12 tháng 5 2019

Chọn đáp án C

HC là hình chiếu của SC lên mặt phẳng (ABCD).

Góc giữa SC với mặt phẳng (ABCD) là:  S C H ^   =   45 °

Kẻ 

Kẻ

Ta có: 

Tam giác SHC vuông cân tại H vì 

Mặt khác: HI = AD = a

Xét tam giác SHI vuông tại H: 

13 tháng 1 2017