Cho \(\Delta ABC\) nhọn, các đường cao \(AD,BE,CF\) cắt nhau tại \(H\)
a) \(Cm:\Delta AEB\) và \(\Delta AFC\) đồng dạng và \(AF.AB=AE.AC\)
b) \(Cm\): góc \(BAD\)\(=\) góc\(BEF\)
c) Gọi \(AI\) là tia phân giác của góc \(BAC\), tia \(AI\) cắt \(FE\) tại \(O\)
\(Cm:IB.OF=IC.OE\)
a: Xét ΔAEB vuông tại E và ΔAFC vuôg tại F có
góc BAE chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF
b: Xét tứ giác AFHE có
góc AFH+góc AEH=180 độ
=>AFHE nội tiếp
=>góc FAH=góc FEH
=>goc BAD=góc BEF