Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEB vuông ạti E và ΔAFC vuôg tại F có
góc BAE chung
=>ΔAEB đồng dạg vơi ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng vơi ΔABC
a: Xét ΔAEB vuông tại E và ΔAFC vuôg tại F có
góc BAE chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF
b: Xét tứ giác AFHE có
góc AFH+góc AEH=180 độ
=>AFHE nội tiếp
=>góc FAH=góc FEH
=>goc BAD=góc BEF
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
b: ΔABC vuông tại A
mà AH là đường cao
nên HA^2=HB*HC
c: AI/IH=BA/BH
EC/AE=BC/BA
mà BA/BH=BC/BA
nên AI/IH=EC/AE
=>AI*AE=IH*EC
3) Xét ΔFHB vuông tại F và ΔEHC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó: ΔFHB\(\sim\)ΔEHC(g-g)
Suy ra: \(\dfrac{FH}{EH}=\dfrac{BH}{CH}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{FH}{BH}=\dfrac{EH}{CH}\)
Xét ΔFHE và ΔBHC có
\(\dfrac{FH}{BH}=\dfrac{EH}{CH}\)(cmt)
\(\widehat{FHE}=\widehat{BHC}\)(hai góc đối đỉnh)
Do đó: ΔFHE\(\sim\)ΔBHC(c-g-c)
1) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔAEB∼ΔAFC(g-g)
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AE\cdot AC=AF\cdot AB\)(đpcm)
a) Xét tam giác AEC và tam giác ABD:
- ∠BAC chung
- ∠ACE = ∠ADB
⇒ △AEC đồng dạng △ABD (g.g)
b) Theo câu a ⇒ \(\dfrac{AE}{AC}=\dfrac{AD}{AB}\)
- ∠BAC chung
=> △ADE đồng dạng △ABC
c) △BEC đồng dạng △BFA(g.g)
=> \(\dfrac{BE}{BF}=\dfrac{BC}{BA}\)
=> AB.BE=BF.BC (1)
△CDB đồng dạng △CFA(g.g)
=> \(\dfrac{CD}{CF}=\dfrac{BC}{AC}\) => CD.AC=CF.BC (2)
Từ (1) và (2) => AB.BE+CD.AC=BF.BC+CF.BC=BC(BF+CF)=BC2.
a) Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔABE∼ΔACF(g-g)
b) Ta có: ΔABE∼ΔACF(cmt)
nên \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AF\cdot AB=AE\cdot AC\)(đpcm)
c) Ta có: \(AF\cdot AB=AE\cdot AC\)(cmt)
nên \(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)(cmt)
\(\widehat{BAC}\) chung
Do đó: ΔAEF∼ΔABC(c-g-c)
d) Xét ΔEBC vuông tại E và ΔDAC vuông tại D có
\(\widehat{DCA}\) chung
Do đó: ΔEBC∼ΔDAC(g-g)
a) Xét \(\Delta\)ABE và \(\Delta\)ACF có
\(\widehat{A}\)là góc chung
\(\widehat{AEB}\)=\(\widehat{AFC}\)(=\(90^O\))
=> \(\Delta\)ABE đồng dạng \(\Delta\)ACF (g.g)
=> \(\frac{AE}{AF}\)=\(\frac{AB}{AC}\)
=> \(\frac{AE}{AB}\)=\(\frac{AF}{AC}\)
Xét \(\Delta\)AEF và \(\Delta\)ABC có
\(\frac{AE}{AB}\)=\(\frac{AF}{AC}\)
Và \(\widehat{A}\)góc chung
Suy ra \(\Delta\)AEF đồng dạng \(\Delta\)ABC( c.g.c) (1)
b) Tương tự, chứng minh \(\Delta\)BEC đồng dạng\(\Delta\)ADC ( G.G)
=> \(\frac{EC}{DC}\)=\(\frac{BC}{AC}\)
=> \(\frac{EC}{BC}\)=\(\frac{DC}{AC}\)
Xét \(\Delta\)DEC và \(\Delta\)ABC có
\(\frac{EC}{BC}\)=\(\frac{DC}{AC}\)
\(\widehat{C}\)góc chung
=> \(\Delta\)DEC đồng dạng \(\Delta\)ABC( c.g.c) (2)
Từ (1) (2) => \(\Delta\)DEC đồng dạng \(\Delta\)AEF
=> \(\widehat{DEC}\)=\(\widehat{AEF}\)(3)
Mà \(\widehat{AEB}\)= \(\widehat{CEB}\)= \(90^O\)
=> \(\widehat{AEF}\)+\(\widehat{FEB}\)=\(\widehat{DEC}\)+\(\widehat{BED}\)(4)
Từ (3)(4) => \(\widehat{FEB}\)=\(\widehat{BED}\)
=> EH là phân giác góc FED