(x^2+x+1).3x+1/x+2=(x^2+x+1).x/2(x+2) Giup minh voi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)^2-3\left(x+1\right)=\left(x+1\right)\left(x+1-3\right)=\left(x+1\right)\left(x-2\right)\)
\(2x\left(x-2\right)-\left(x-2\right)^2=\left(x-2\right)\left[2x-\left(x-2\right)\right]=\left(x-2\right)\left(2x-x+2\right)=\left(x-2\right)\left(x+2\right)\)
\(4x^2-20xy+25y^2=\left(2x\right)^2-2.2x.5y+\left(5y\right)^2=\left(2x-5y\right)^2\)
\(x^2+3x-x-3=x\left(x+3\right)-\left(x+3\right)=\left(x-1\right)\left(x+3\right)\)
\(x^2-xy+x-y=x\left(x-y\right)+\left(x-y\right)=\left(x-y\right)\left(x+1\right)\)
\(2y\left(x+2\right)-3x-6=2y\left(x+2\right)-3\left(x+2\right)=\left(x+2\right)\left(2y-3\right)\)
a) bạn nhóm 2 cái cuối thành 1 nhóm, 2 cái ở giữa thành 1 nhóm, rồi đặt ẩn phụ là ra
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)
\(\Leftrightarrow\)\(\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)
Đặt \(x^2+3x=t\) ta có:
\(t\left(t+2\right)-24=0\)
\(\Leftrightarrow\)\(t^2+2t-24=0\)
\(\Leftrightarrow\)\(\left(t-4\right)\left(t+6\right)=0\)
đến đây bn thay trở lại rồi tìm nghiệm nhé
\(a,\left(x-2\right)^2-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x=-10\)
\(\Leftrightarrow x=-\dfrac{5}{12}\)
Vậy:....
\(b,\left(5x+1\right)^2-\left(5x+3\right)\left(5x-3\right)=30\)
\(\Leftrightarrow25x^2+10x+1-25^2+9=30\)
\(\Leftrightarrow10x=20\)
\(\Rightarrow x=2\)
Vậy :....
\(c,\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)\(\Leftrightarrow x^3+27-x\left(x^2-4\right)=15\)
\(\Leftrightarrow x^3+27-x^3+4x=15\)
\(\Leftrightarrow4x=15-27=-12\)
\(\Leftrightarrow x=-3\)
vậy : .....
1/3x+2/5(x+1)=0
1/3x+2/5x+2/5=0
11/15x =-2/5
x =-2/5:11/15
x =-6/11
\(\left|3x-2018\right|+\left|x-2017\right|=\left|2x-1\right|\)
\(\Rightarrow\orbr{\begin{cases}3x-2018+x-2017=2x-1\\-\left(3x-2018\right)+\left[-\left(x-2017\right)\right]=2x-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}4x-4035=2x-1\\\left(-3x-x\right)+\left(2018+2017\right)=2x-1\end{cases}}\)
Làm tiếp
TH2:
\(\left|3x-2018\right|+\left|x-2017\right|=\left|2x-1\right|\)
\(\Rightarrow\orbr{\begin{cases}3x-2018+x-2017=-2x+1\\-\left(3x-2018\right)+\left[-\left(x-2017\right)\right]=-2x+1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}4x-4035=-2x+1\\\left(-3x-x\right)+\left(2018+2017\right)=-2x+1\end{cases}}\)
Tự tiếp tiếp nha bạn
Bài sau cũng tg tự vậy mà làm
\(\dfrac{\left(x^2+x+1\right)\left(3x+1\right)}{x+2}=\dfrac{x\left(x^2+x+1\right)}{2\left(x+2\right)}\) \(\left(dkxd:x\ne-2\right)\)
\(\Leftrightarrow\dfrac{\left(x^2+x+1\right)\left(3x+1\right)}{x+2}-\dfrac{x\left(x^2+x+1\right)}{2\left(x+2\right)}=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left[2\left(3x+1\right)-x\right]=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(6x+2-x\right)=0\)
Bỏ vế đằng trước \(x^2+x+1=0\) do vô nghiệm
\(\Leftrightarrow6x+2-x=0\)
\(\Leftrightarrow5x=-2\)
\(\Leftrightarrow x=-\dfrac{2}{5}\left(tmdk\right)\)
Vậy \(S=\left\{-\dfrac{2}{5}\right\}\)
\(\dfrac{\left(x^2+x+1\right).\left(3x+1\right)}{x+2}=\dfrac{\left(x^2+x+1\right).x}{2\left(x+2\right)}\)
hay \(\left(x^2+x+1\right).\dfrac{3x+1}{x+2}=\left(x^2+x+1\right).\dfrac{x}{2\left(x+2\right)}\)