Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\left(3x+2\right)^2-\left(3x-2\right)^2=5x+38\\\Leftrightarrow 9x^2+12x+4-9x^2+12x-4=5x+38\\ \Leftrightarrow24x-5x=38\\ \Leftrightarrow19x=38\\\Leftrightarrow x=2\)
Vậy nghiệm của phương trình trên là \(2\)
\(b.3\left(x-2\right)^2+9\left(x-1\right)=3\left(x^2+x-3\right)\\\Leftrightarrow 3\left(x^2-4x+4\right)+9x-9=3x^2+3x-9\\ \Leftrightarrow3x^2-3x^2-12x+9x-3x=-12+9-9\\ \Leftrightarrow-6x=-12\\\Leftrightarrow x=2\)
Vậy nghiệm của phương trình trên là \(2\)
\(c.\left(x-1\right)^3-x\left(x+1\right)^2=5x\left(2-x\right)-11\left(x-2\right)\\ \Leftrightarrow x^3-3x^2+3x-1-x\left(x^2+2x+1\right)=10x-5x^2-11x+22\\ \Leftrightarrow x^3-3x^2+3x-1-x^3-2x^2-x=10x-5x^2-11x+22\\\Leftrightarrow x^3-x^3-3x^2-2x^2+5x^2+3x-x-10x+11x=1+22\\ \Leftrightarrow3x=23\\\Leftrightarrow x=\frac{23}{3}\)
Vậy nghiệm của phương trình trên là \(\frac{23}{3}\)
\(d.\left(x+3\right)^2-\left(x-3\right)^2=6x+18\\ \Leftrightarrow x^2+6x+9-x^2+6x-9=6x+18\\ \Leftrightarrow12x-6x=18\\ \Leftrightarrow6x=18\\ \Leftrightarrow x=3\)
Vậy nghiệm của phương trình trên là \(3\)
\(e.\left(x+1\right)\left(x^2-x+1\right)-2x=x\left(x-1\right)\left(x+1\right)\\\Leftrightarrow x^3+1-2x=x\left(x^2-1\right)\\\Leftrightarrow x^3+1-2x=x^3-x\\ \Leftrightarrow x^3-x^3-2x+x=-1\\ \Leftrightarrow-x=-1\\ \Leftrightarrow x=1\)
Vậy nghiệm của phương trình trên là \(1\)
\(f.\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\\\Leftrightarrow x^3-6x^2+12x-8+9x^2-1=x^3+3x^2+3x+1\\ \Leftrightarrow x^3-x^3-6x^2+9x^2-3x^2+12x-3x=8+1+1\\ \Leftrightarrow9x=10\\ \Leftrightarrow x=\frac{10}{9}\)
Vậy nghiệm của phương trình trên là \(\frac{10}{9}\)
a) \(\left(4x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=\left(7x-1\right)\left(x+2\right)+\left(2x+1\right)^2-\left(4x^2+7\right)\)(1)
\(\Leftrightarrow\left(16x^2-8x+1\right)-\left(9x^2-4\right)=\left(7x^2+14x-x-2\right)+\left(4x^2+4x+1\right)-\left(4x^2+7\right)\)
\(\Leftrightarrow16x^2-8x+1-9x^2+4=7x^2+13x-2+4x^2+4x+1-4x^2-7\)
\(\Leftrightarrow7x^2-8x+5=7x^2+17x-8\)
\(\Leftrightarrow7x^2-8x-7x^2-17x=-8-5\)
\(\Leftrightarrow-25x=-13\)
\(\Leftrightarrow x=\dfrac{13}{25}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{13}{25}\right\}\)
\(a.4\left(x+2\right)-7\left(2x-1\right)+9\left(3x-4\right)=30\\ 4x+8-14x+7+27x-36=30\\ 17x+15=66\\ 17x=51\Rightarrow x=3\)
\(b.2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\\ =10x-16-12x+15=12x-16+11\\ -2x-1=12x-5\\ \Leftrightarrow-2x-12x=1-5\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{7}{2}\)
\(c.4x^2+3\left(2x^2+1\right)=2x\left(5x-7\right)\\ 4x^2+6x^2+3=10x^2-14x\\ 10x^2+3=10x^2-14x\\ \Leftrightarrow3=14x\\\Rightarrow x=\dfrac{3}{14}\)
\(d.x\left(x^2-7\right)=2x\left(\dfrac{1}{2}x^2+6\right)+8\\ x^3-7x=x^3+12x+8\\ \Leftrightarrow-7x=12x+8\\ \Leftrightarrow-7x-12x=8\\ \Leftrightarrow-19x=8\Rightarrow x=-\dfrac{8}{19}\)
1) 4x\(^2\).(5x3+2x-1)
= 20x\(^5\)+8x\(^3\)-4x\(^2\).
2) 4x\(^3\): x2
= 4x
3) ( 15x2y3-10x3y3+6xy): 5xy
= 3xy2-2x2y2+\(\dfrac{6}{5}\)
4) (5x3+14x2+12x+8 ): (x+2)
= 5x2+4x+4
5)\(\dfrac{7}{2x}\)+\(\dfrac{11}{3y^2}\)
=\(\dfrac{7.3y^2+11.2x}{6xy^2}\) =\(\dfrac{21y^2+22x}{6xy^2}\) = \(\dfrac{21+22}{6}\) =\(\dfrac{43}{6}\)
6) \(\dfrac{x}{x+2}\) +\(\dfrac{3}{\left(x+2\right)\left(4x-7\right)}\)
7)\(\dfrac{3}{x-y}\)-\(\dfrac{2x^2}{x+y}\)
= \(\dfrac{3\left(x+y\right)-2\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{3x+3y-2x-2y}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{x+y}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{1}{x-y}\).
8)\(\dfrac{1}{2}\)x2y2.(2x+y)(2x-y)
= \(\dfrac{1}{2}\)x2y2.(4x2-2xy+2xy-y2)
= \(\dfrac{1}{2}\)x2y2.(4x2-y2)
= 2x4y2-\(\dfrac{1}{2}\)x2y4
9) (x-\(\dfrac{1}{2}\)).(x+\(\dfrac{1}{2}\)).(4x-1)
= x2.(4x-1)
= 4x3-x2
10)\(\dfrac{3x}{2x+6}\)+\(\dfrac{6-x}{2x^2+6x}\)
= \(\dfrac{3x}{2\left(x+3\right)}\)+\(\dfrac{6-x}{2x\left(x+3\right)}\)= \(\dfrac{3x^2+6-x}{2x\left(x+3\right)}\)=\(\dfrac{3-x}{3}\)= -x
11) x2-\(\dfrac{1}{2x-2}\)+3x+\(\dfrac{3}{1-x^2}\)
12)\(\dfrac{x^2}{x^2-y^2}\)-\(\dfrac{x-y}{x^2-y^2}\)
= \(\dfrac{x^2-xy}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}\)= \(\dfrac{x}{x+y}\)
a) (2x+3)(4x2-6x+9)-2(4x3-1)+(8x-1)=15
<=>8x3+27-8x3+2+8x-1=15
<=>8x+28=15
<=>8x=-13
<=>x=-13/8
b) (x+3)3-(x+9)(x2+27)-(5x-216) = 3x-4
<=>x3+9x2+27x+27-x3-27x-9x2-243-5x+216=3x-4
<=>-5x=3x-4
<=>8x=4
<=>x=1/2
1) Ta có : \(4x+20=0\)
=> \(x=-\frac{20}{4}=-5\)
Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)
2) Ta có : \(3x+15=30\)
=> \(3x=15\)
=> \(x=5\)
Vậy phương trình có tập nghiệm là \(S=\left\{5\right\}\)
3) Ta có : \(8x-7=2x+11\)
=> \(8x-2x=11+7=18\)
=> \(6x=18\)
=> \(x=3\)
Vậy phương trình có tập nghiệm là \(S=\left\{3\right\}\)
4) Ta có : \(2x+4\left(36-x\right)=100\)
=> \(2x+144-4x=100\)
=> \(-2x=-44\)
=> \(x=22\)
Vậy phương trình có tập nghiệm là \(S=\left\{22\right\}\)
5) Ta có : \(2x-\left(3-5x\right)=4\left(x+3\right)\)
=> \(2x-3+5=4x+12\)
=> \(-2x=10\)
=> \(x=-5\)
Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)
1) 4x+20=0
\(\Leftrightarrow\) 4x=-20
\(\Leftrightarrow\) x=-5
Vậy pt trên có tập nghiệm là S={-5}
2) 3x+15=30
\(\Leftrightarrow\) 3x=15
\(\Leftrightarrow\) x=5
Vậy pt trên có tập nghiệm là S={5}
3) 8x-7=2x+11
\(\Leftrightarrow\) 8x-2x=11+7
\(\Leftrightarrow\) 6x=18
\(\Leftrightarrow\) x=3
Vậy pt trên có tập nghiệm là S={3}
4) 2x+4(36-x)=100
\(\Leftrightarrow\) 2x+144-4x=100
\(\Leftrightarrow\) -2x+144=100
\(\Leftrightarrow\) -2x=-44
\(\Leftrightarrow\) x=22
Vậy pt trên có tập nghiệm là S={22}
5) 2x-(3-5x)=4(x+3)
\(\Leftrightarrow\) 2x-3+5x=4x+12
\(\Leftrightarrow\) 2x+5x-4x=12+3
\(\Leftrightarrow\) 3x=15
\(\Leftrightarrow\) x=5
Vậy pt trên có tập nghiệm là S={5}
6) 3x(x+2)=3(x-2)2
\(\Leftrightarrow\) 3x2+6x=3(x2-2x.2+22)
\(\Leftrightarrow\) 3x2+6x=3x2-12x+12
\(\Leftrightarrow\) 3x2-3x2+6x+12x=12
\(\Leftrightarrow\) 18x=12
\(\Leftrightarrow\) x=\(\frac{2}{3}\)
1) \(\left(5x-4\right)\left(4x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-4=0\\4x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=4\\4x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{4}{5};\dfrac{3}{2}\right\}\)
2) \(\left(4x-10\right)\left(24+5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=10\\5x=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-24}{5}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{5}{2};\dfrac{-24}{5}\right\}\)
3) \(\left(x-3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{3;\dfrac{-1}{2}\right\}\)
câu 1:
\(a,\left(5x+1\right)^2-\left(5x+3\right)\left(5x-3\right)=30\)
=> \(25x^2+10x+1-\left(25x^2-9\right)=30\)
=> \(25x^2+10x+1-25x^2+9=30\)
=> \(10x+10=30\)
=> \(10x=20\)
=> \(x=2\)
Vậy..........
\(b,\left(2x+3\right)^2-\left(2x-3\right)^2+4\left(x^2-6x\right)=64\)
=> \(6.4x+4x^2-24x=64\)
=> \(24x+4x^2-24x=64\)
=> \(4x^2=64\)
=> \(x^2=64:4=16\)
=> \(\left|x\right|=\sqrt{16}\)
=> \(x=\pm4\)
Vậy \(x\in\left\{4;-4\right\}\)
\(a,\left(x-2\right)^2-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x=-10\)
\(\Leftrightarrow x=-\dfrac{5}{12}\)
Vậy:....
\(b,\left(5x+1\right)^2-\left(5x+3\right)\left(5x-3\right)=30\)
\(\Leftrightarrow25x^2+10x+1-25^2+9=30\)
\(\Leftrightarrow10x=20\)
\(\Rightarrow x=2\)
Vậy :....
\(c,\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)\(\Leftrightarrow x^3+27-x\left(x^2-4\right)=15\)
\(\Leftrightarrow x^3+27-x^3+4x=15\)
\(\Leftrightarrow4x=15-27=-12\)
\(\Leftrightarrow x=-3\)
vậy : .....
Thank You !