cho S=1/31+1/32+1/33+...+1/60 Cmr S<4/5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)
Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ; (1/51 + 1/52+...+1/59+1/60) > 1/6
S > 1/4 + 1/5 + 1/6.
Trong khi đó (1/4 + 1/5 + 1/6) > 3/5
=>S > 3/5 (1)
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)
=> S < 4/5 (2)
Từ (1) và (2) => 3/5 <S<4/5
Lời giải:
$S=(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40})+(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50})+(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60})$
$> \frac{10}{40}+\frac{10}{50}+\frac{10}{60}=\frac{37}{60}> \frac{36}{60}=\frac{3}{5}$
Mặt khác:
$S=(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40})+(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50})+(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60})$
$< \frac{10}{30}+\frac{10}{40}+\frac{1}{50}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}$
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)
Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ; (1/51 + 1/52+...+1/59+1/60) > 1/6
S > 1/4 + 1/5 + 1/6.
Trong khi đó (1/4 + 1/5 + 1/6) > 3/5
=>S > 3/5 (1)
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)
=> S < 4/5 (2)
Từ (1) và (2) => 3/5 <S<4/5
Giải:
S=\(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{60}\)
Có 30 phân số; chia làm 3 nhóm
S<\(\left(\dfrac{1}{30}+...+\dfrac{1}{30}\right)+\left(\dfrac{1}{40}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{50}+...+\dfrac{1}{50}\right)\)
S<\(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\)
S<\(\dfrac{47}{60}< \dfrac{48}{60}=\dfrac{4}{5}\)
⇒S<\(\dfrac{4}{5}\) (đpcm)
Chúc bạn học tốt!
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)
Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ; (1/51 + 1/52+...+1/59+1/60) > 1/6
S > 1/4 + 1/5 + 1/6.
Trong khi đó (1/4 + 1/5 + 1/6) > 3/5
=>S > 3/5 (1)
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)
=> S < 4/5 (2)
Từ (1) và (2) => 3/5 <S<4/5 Chúc bạn học tốt !
\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)
\(=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+...+\frac{1}{60}\right)\)
\(< \left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\left(\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+...+\frac{1}{50}\right)\)
\(=\frac{10}{30}+\frac{10}{40}+\frac{10}{50}=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\)