cmr: nếu x2+2y là số chính phương thì x2+y là tổng 2 số chính phương
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
PH
0
VT
0
NT
2
S
6 tháng 7 2018
Gọi 2 số chính phương là a2,b2
Ta có: n=a2+b2
=>\(2n=a^2+b^2+a^2+b^2=a^2+2ab+b^2+a^2-2ab+b^2=\left(a+b\right)^2+\left(a-b\right)^2\) (đpcm)
HN
6 tháng 7 2018
Theo lý thuyết: số chính phương là số có mũ bằng 2
Gọi 2 số chính phương cần tìm là: a2 ; b2
Ta có:
n = a2 + b2
\(\Rightarrow\)2n = (a2+b2) . 2 = a2 + b2 + a2 + b2 = a2 + 2ab + b2 + a2 - 2ab + b2 = ( a2 + b2 ) + ( a2 + b2 )
Vậy nếu n là tổng của 2 số chính phương thì 2n cũng là tổng của 2 số chính phương