a(x)= -2x^5-x^3-3x^2+5x+9+2x^5-6x^2-2; b(x)= -4x^3+9x^2-2x+4x^3-7+x^3+2x+5. a) thu gọn và sắp xếp giảm dần. b) tính m(x)=a(x)+b(x), n(x)=a(x)-b(x). c) chứng tỏ x= -1 là nghiệm của m(x) nhưng không phải nghiệm của n(x).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Trả lời:
\(\left(1\right)\) \(-3\left(1-2x\right)-4\left(1+3x\right)=-5x+5\)
\(\Leftrightarrow-3+6x-4-12x=-5x+5\)
\(\Leftrightarrow6x-12x+5x=3+4+5\)
\(\Leftrightarrow x=12\)
\(\left(2\right)\) \(3\left(2x-5\right)-6\left(1-4x\right)=-3x+7\)
\(\Leftrightarrow6x-15-6+24x=-3x+7\)
\(\Leftrightarrow6x+24x+3x=15+6+7\)
\(\Leftrightarrow33x=28\)
\(\Leftrightarrow x=\dfrac{28}{33}\)
\(\left(3\right)\) \(\left(1-3x\right)-2\left(3x-6\right)=-4x-5\)
\(\Leftrightarrow1-3x-6x+12=-4x-5\)
\(\Leftrightarrow-3x-6x+4x=-1-12-5\)
\(\Leftrightarrow-5x=-18\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(\left(4\right)\) \(x\left(4x-3\right)-2x\left(2x-1\right)=5x-7\)
\(\Leftrightarrow4x^2-3x-4x^2+2x=5x-7\)
\(\Leftrightarrow-x-5x=-7\)
\(\Leftrightarrow-6x=-7\)
\(\Leftrightarrow x=\dfrac{7}{6}\)
\(\left(5\right)\) \(3x\left(2x-1\right)-6x\left(x+2\right)=-3x+4\)
\(\Leftrightarrow6x^2-3x-6x^2-12x=-3x+4\)
\(\Leftrightarrow-15x+3x=4\)
\(\Leftrightarrow-12x=4\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
\(a,\left(6x+1\right)\left(x+2\right)-2x\left(3x-5\right)\)
\(=6x^2+12x+x+2-6x^2+10x\)
\(=23x+2\)
a) (6x + 1)(x + 2) - 2x(3x - 5)
= 6x2 + 12x + x + 2 - 6x2 + 10x
= (6x2 - 6x2) + (12x + x + 10x) + 2
= 23x + 2
b) (2x - 1)2 - (2x - 3)(2x + 3)
= 4x2 - 4x + 1 - 4x2 + 9
= (4x2 - 4x2) - 4x + (1 + 9)
= -4x + 10
c) (2x - 3)3 - (3x + 1)(5 - 4x) - 16x2
= 8x3 - 36x2 + 54x - 15x + 12x2 - 5 + 4x - 16x2
= 8x3 - (36x2 - 12x2 + 16x2) + (54x - 15x + 4x) - 5
= 8x3 - 40x2 + 43x - 5
d) (3x + 2) - (x - 5) - x(3x - 13)
= 3x + 2 - x + 5 - 3x2 + 13x
= (3x - x + 13x) + (2 + 5) - 3x2
= 15x + 7 - 3x2
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6
a)(2x-3)(x+5)=0
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)
Vậy x=3/2 hoặc x=-5
a) \(\left(2x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{\dfrac{3}{2};-5\right\}\)
b) \(3x\left(x-2\right)-7\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{2;\dfrac{7}{2}\right\}\)
c) \(5x\left(2x-3\right)-6x+9=0\)
\(\Leftrightarrow5x\left(2x-3\right)-3\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\5x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{\dfrac{3}{2};\dfrac{3}{5}\right\}\)
a: \(A\left(x\right)=2x^4-x^3+3x^2+9x-2\)
\(B\left(x\right)=2x^4-5x^3-x+9\)
\(C\left(x\right)=x^4+4x^2+5\)
A(x): bậc 4; hệ số cao nhất là 2; hệ số tự do là -2
B(x): bậc 4; hệ số cao nhất là 4; hệ số tự do là 9
b: M(x)=A(x)+B(x)=4x^4-6x^3+3x^2+8x+7
N(x)=B(x)-A(x)=-4x^3-3x^2-10x+11
c: Q(x)=-N(x)=4x^3+3x^2+10x-11
a) ( 3x + 2 )( x - 1 ) - ( x + 2 )( 3x + 1 ) = 7
<=> 3x2 - x - 2 - ( 3x2 + 7x + 2 ) = 7
<=> 3x2 - x - 2 - 3x2 - 7x - 2 = 7
<=> -8x - 4 = 7
<=> -8x = 11
<=> x = -11/8
b) ( 6x + 5 )( 2x + 3 ) - ( 4x + 3 )( 3x - 2 ) = 8
<=> 12x2 + 28x + 15 - ( 12x2 + x - 6 ) = 8
<=> 12x2 + 28x + 15 - 12x2 - x + 6 = 8
<=> 27x + 21 = 8
<=> 27x = -13
<=> x = -13/27
c) 2x( x + 3 ) - ( x + 1 )( 2x + 1 ) - 5 = 9
<=> 2x2 + 6x - ( 2x2 + 3x + 1 ) - 5 = 9
<=> 2x2 + 6x - 2x2 - 3x - 1 - 5 = 9
<=> 3x - 6 = 9
<=> 3x = 15
<=> x = 5
d) ( 5x + 3 )( 4x - 7 ) - ( 10x + 9 )( 2x - 3 ) = 10
<=> 20x2 - 23x - 21 - ( 20x2 - 12x - 27 ) = 10
<=> 20x2 - 23x - 21 - 20x2 + 12x + 27 = 10
<=> -11x + 6 = 10
<=> -11x = 4
<=> x = -4/11
a, \(\left(3x+2\right)\left(x-1\right)-\left(x+2\right)\left(3x+1\right)=7\Leftrightarrow-8x-4=7\Leftrightarrow x=-\frac{11}{8}\)
b, \(\left(6x+5\right)\left(2x+3\right)-\left(4x+3\right)\left(3x-2\right)=8\Leftrightarrow27x+21=8\Leftrightarrow x=-\frac{13}{27}\)
c, \(2x\left(x+3\right)-\left(x+1\right)\left(2x+1\right)-5=9\Leftrightarrow3x-6=9\Leftrightarrow x=5\)
d, \(\left(5x+3\right)\left(4x-7\right)-\left(10x+9\right)\left(2x-3\right)=10\Leftrightarrow-11x+6=10\Leftrightarrow x=-\frac{4}{11}\)
1) (x+6)(3x-1)+x+6=0
⇔(x+6)(3x-1)+(x+6)=0
⇔(x+6)(3x-1+1)=0
⇔3x(x+6)=0
2) (x+4)(5x+9)-x-4=0
⇔(x+4)(5x+9)-(x+4)=0
⇔(x+4)(5x+9-1)=0
⇔(x+4)(5x+8)=0
3)(1-x)(5x+3)÷(3x-7)(x-1)
=\(\frac{\left(1-x\right)\left(5x+3\right)}{\left(3x-7\right)\left(x-1\right)}=\frac{\left(1-x\right)\left(5x+3\right)}{\left(7-3x\right)\left(1-x\right)}=\frac{\left(5x+3\right)}{\left(7-3x\right)}\)
a) (3x - 1)(2x + 7) - (x + 1)(6x - 5) = 16
6x2 + 21x - 2x - 7 - 6x2 + 5x - 6x + 5 = 16
(6x2 - 6x2) + (21x - 2x + 5x - 6x) + (-7 + 5) = 16
18x - 2 = 16
18x = 18
x = 1
Vậy x = 1
b) (10x + 9)x - (5x - 1)(2x + 3) = 8
10x2 + 9x - 10x2 - 15x + 2x + 3 = 8
(10x2 - 10x2) + (9x - 15x + 2x) + 3 = 8
-4x + 3 = 8
-4x = 5
x = \(\frac{-5}{4}\)
Vậy x = \(\frac{-5}{4}\)
c) x(x + 1)(x + 6) - x3 = 5x
(x2 + x)(x + 6) - x3 = 5x
x3 + 7x2 + 6x - x3 = 5x
7x2 + 6x = 5x
x(7x + 6) = 5x
=> 7x + 6 = 5
7x = -1
x = \(\frac{-1}{7}\)
Vậy x = \(\frac{-1}{7}\)
d) (3x - 5)(7 - 5x) + (5x + 2)(3x - 2) - 2 = 0
21x - 15x2 - 35 + 25x + 15x2 - 10x + 6x - 4 - 2 = 0
(-15x2 + 15x2) + (21x + 25x - 10x + 6x) + (-35 - 4 - 2) = 0
42x - 41 = 0
42x = 41
x = \(\frac{41}{42}\)
Vậy x = \(\frac{41}{42}\)
một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?