tìm x,y nguyên biết:x/2=1/6+3/y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x}{6}-\frac{1}{2}=\frac{1}{y}\)
\(\Leftrightarrow\frac{x}{6}-\frac{3}{6}=\frac{1}{y}\)
\(\Leftrightarrow\frac{x-3}{6}=\frac{1}{y}\)
\(\Leftrightarrow\left(x-3\right)y=6\)
Lập bảng nốt thôi
\(x+y+z+8=2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\left(1\right)\)
Áp dụng Bđt Bunhiacopxki :
\(\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le\left(2^2+4^2+6^2\right)\left(x-1+y-2+z-3\right)\)
\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z-6\right)\)
\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z+8\right)-784\)
Dấu "=" xảy ra khi và chỉ khi
\(\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=\dfrac{x+y+z-6}{14}\left(2\right)\)
Đặt \(t=x+y+z+8\)
\(\left(1\right)\Leftrightarrow t^2=56t-784\)
\(\Leftrightarrow t^2-56t+784=0\)
\(\Leftrightarrow\left(t-28\right)^2=0\)
\(\Leftrightarrow t=28\)
\(\Leftrightarrow x+y+z+8=28\)
\(\Leftrightarrow x+y+z-6=14\)
\(\left(2\right)\Leftrightarrow\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1.2=2\\y-2=1.4=4\\z-2=1.8=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=10\end{matrix}\right.\) thỏa mãn đề bài
Số nguyên x , y là:
\(\frac{x}{9}=\frac{1}{y}\)
=> x.y=9.1
=> x và y chỉ có thể là 3
Vậy x = 3; y = 3
t*** mik nhá
\(\dfrac{x}{18}=\dfrac{4}{3}\Rightarrow x=\dfrac{18.4}{3}=24\\ \dfrac{20}{y}=\dfrac{4}{3}\Rightarrow y=\dfrac{20.3}{4}=15\\ \dfrac{z}{21}=\dfrac{4}{3}\Rightarrow z=\dfrac{21.4}{3}=28\)
Ta có:
\(\dfrac{x}{18}\) = \(\dfrac{4}{3}\)
⇒ x = \(\dfrac{4}{3}\) . 18
⇒ x = 24
\(\dfrac{20}{y}\) = \(\dfrac{4}{3}\)
⇒ y = 20 : \(\dfrac{4}{3}\)
⇒ y = 15
\(\dfrac{z}{21}\) = \(\dfrac{4}{3}\)
⇒ z = \(\dfrac{4}{3}\) . 21
⇒ z = 28
⇒ x + y + z = 24 + 15 + 28 = 67
Vậy x + y + z = 67
\(x^2\left(x+1\right)+\left(x+1\right)=y^3\)
\(\left(x+1\right)\left(x^2+1\right)=y^3\)
\(\left(x+1\right)\left(x^2+1\right)-y^3=0\)
\(\orbr{\begin{cases}x+1=0\\x^2+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x^2=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\kothoaman\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=-1\\y^3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=0\end{cases}}\)
Vậy x = -1, y =0
\(\dfrac{x}{3}=\dfrac{y}{6}=\dfrac{2x^2}{18}=\dfrac{y^2}{36}=\dfrac{2x^2-y^2}{18-36}=\dfrac{-8}{-18}=\dfrac{4}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{4.3}{9}=\dfrac{4}{3}\\y=\dfrac{4.6}{9}=\dfrac{8}{3}\end{matrix}\right.\)
Bạn đúng 1 phần, vì đây là 2x2 và y2 nên nó sẽ có 2 trường hợp!
\(\dfrac{x}{3}\)=\(\dfrac{y}{6}\)=\(\dfrac{2x^2}{18}\)=\(\dfrac{y^2}{36}\)=\(\dfrac{2x^2-y^2}{18-36}\)=\(\dfrac{-8}{-18}\) =\(\dfrac{4}{9}\)
=>TH1: \(\dfrac{4}{9}\) ⇒\(\left\{{}\begin{matrix}\dfrac{4}{3}\\\dfrac{8}{3}\end{matrix}\right.\)
=>TH2: \(\dfrac{-4}{9}\)⇒\(\left\{{}\begin{matrix}\dfrac{-4}{3}\\\dfrac{-8}{3}\end{matrix}\right.\)
Khi em các em viết đề bài trên hỏi đáp của Olm thì viết bằng công thức toán học góc trái màn hình, có biểu tượng \(\Sigma\). Như vậy sẽ giúp cộng đồng Olm hiểu đúng đề bài và trợ giúp các em được tốt nhất.
Cảm ơn các em đã đồng hành cùng Olm.
Ta có x/2 = 1/6 + 3/y ⇒ x/2 - 1/6 = 3/y ⇒ 3x - 1/ 6 = 3/y
Vậy y( 3x - 1 ) = 18
Mà x; y nguyên nên 3x - 1 nguyên và y; 3x - 1 ϵ Ư( 18 ) = { -1; 1; 2; -2; -3; 3; -6; 6; 18; -18 }
Vì 3x - 1 chia 3 dư 2 nên ( 3x - 1 ) ϵ { 2; -1 }
Nếu 3x - 1 = 2 ⇒ x = 1; y = 9
Nếu 3x - 1 = -1 ⇒ x = 0; y = -18
Vậy các cặp số nguyên ( x; y ) cần tìm là ( 1; 9 ) ; ( 0; -18 )