tìm gtnn của biểu thức M=(x^2 - 9)^2 + |y-3| -1
HELP ME
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(F\left(x\right)=x^6-x^3+x^2-x+1\)
\(=x^6-x^3+\dfrac{1}{4}+x^2-x+\dfrac{1}{4}+\dfrac{1}{2}\)
\(=\left(x^3\right)^2-2x^3\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+x^2-2x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{1}{2}\)
\(=\left(x^3-\dfrac{1}{2}\right)^2+\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\)
\(=>F\left(x\right)\) vô nghiệm
Ta có: 3x + y = 1 => y = 1 - 3x
a, Thay y = 1 - 3x vào M, ta có:
\(\Rightarrow M=3x^2+\left(1-3x\right)^2=3x^2+1-6x+9x^2=12x^2-6x+1=3\left(4x^2-2x+\frac{1}{3}\right)\)
\(=3\left(4x^2-2x+\frac{1}{4}+\frac{1}{12}\right)=3\left(2x-\frac{1}{2}\right)^2+\frac{3}{12}=3\left(2x-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vì \(\left(2x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow3\left(2x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow3\left(2x-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\forall x\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-\frac{1}{2}=0\\3x+y=1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=1-3x=1-3.\frac{1}{4}=\frac{1}{4}\end{cases}}\)\(\Leftrightarrow x=y=\frac{1}{4}\)
Vậy GTNN M = 1/4 khi x = y = 1/4
b, Thay y = 1 - 3x vào N
\(\Rightarrow N=x\left(1-3x\right)=x-3x^2=-3\left(x^2-\frac{x}{3}+\frac{1}{36}-\frac{1}{36}\right)\)
\(=-3\left(x-\frac{1}{6}\right)^2-3.\left(-\frac{1}{36}\right)=-3\left(x-\frac{1}{6}\right)^2+\frac{1}{12}\)
Vì \(\left(x-\frac{1}{6}\right)^2\ge0\forall x\)
\(\Rightarrow-3\left(x-\frac{1}{6}\right)^2\le0\forall x\)
\(\Rightarrow-3\left(x-\frac{1}{6}\right)^2+\frac{1}{12}\le\frac{1}{12}\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{6}=0\\3x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{6}\\y=1-3x=1-3.\frac{1}{6}=\frac{1}{2}\end{cases}}\)
Vậy GTLN N = 1/12 khi x = 1/6 và y = 1/2
Áp dụng BĐT bunhiacopxki ta được:
\(\left(x+y+z\right)^2\le\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)\)
\(\Rightarrow3^2\le3.\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow x^2+y^2+z^2\ge3\)
\(\text{Dấu "=" xảy ra khi: x=y=z=1}\)
Vậy GTNN của M là 3 tau x=y=z=1
a) Ta thấy: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)
\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)
Dấu \("="\) xảy ra khi: \(\left|\dfrac{2}{5}-x\right|=0\Leftrightarrow\dfrac{2}{5}-x=0\Leftrightarrow x=\dfrac{2}{5}\)
Vậy \(Min_Q=\dfrac{9}{2}\) khi \(x=\dfrac{2}{5}\).
\(---\)
b) Ta thấy: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)
\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\forall x\)
Dấu \("="\) xảy ra khi: \(\left|x+\dfrac{2}{3}\right|=0\Leftrightarrow x+\dfrac{2}{3}=0\Leftrightarrow x=-\dfrac{2}{3}\)
Vậy \(Min_M=-\dfrac{3}{5}\) khi \(x=-\dfrac{2}{3}\).
\(---\)
c) Ta thấy: \(\left|\dfrac{7}{4}-x\right|\ge0\forall x\)
\(\Rightarrow-\left|\dfrac{7}{4}-x\right|\le0\forall x\)
\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\forall x\)
Dấu \("="\) xảy ra khi: \(\left|\dfrac{7}{4}-x\right|=0\Leftrightarrow\dfrac{7}{4}-x=0\Leftrightarrow x=\dfrac{7}{4}\)
Vậy \(Max_N=-8\) khi \(x=\dfrac{7}{4}\).
a) Ta có: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)
\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)
Dấu "=" xảy ra khi:
\(\dfrac{2}{5}-x=0\)
\(\Rightarrow x=\dfrac{2}{5}\)
Vậy: ...
b) Ta có: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)
\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\)
Dấu "=" xảy ra:
\(x+\dfrac{2}{3}=0\)
\(\Rightarrow x=-\dfrac{2}{3}\)
Vậy: ...
c) Ta có: \(-\left|\dfrac{7}{4}-x\right|\le0\forall x\)
\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\)
Dấu "=" xảy ra:
\(\dfrac{7}{4}-x=0\)
\(\Rightarrow x=\dfrac{7}{4}\)
Vậy: ...
Mmin=-1 khi y=3 và x=+-3
Làm như nào vậy. bạn giải rõ ràng ra đi