K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2017

Mmin=-1 khi y=3 và x=+-3

4 tháng 3 2017

Làm như nào vậy. bạn giải rõ ràng ra đi

21 tháng 2 2021

\(F\left(x\right)=x^6-x^3+x^2-x+1\)

\(=x^6-x^3+\dfrac{1}{4}+x^2-x+\dfrac{1}{4}+\dfrac{1}{2}\)

\(=\left(x^3\right)^2-2x^3\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+x^2-2x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{1}{2}\)

\(=\left(x^3-\dfrac{1}{2}\right)^2+\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\)

\(=>F\left(x\right)\) vô nghiệm

23 tháng 10 2023

a) Ta thấy: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)

\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)

Dấu \("="\) xảy ra khi: \(\left|\dfrac{2}{5}-x\right|=0\Leftrightarrow\dfrac{2}{5}-x=0\Leftrightarrow x=\dfrac{2}{5}\)

Vậy \(Min_Q=\dfrac{9}{2}\) khi \(x=\dfrac{2}{5}\).

\(---\)

b) Ta thấy: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)

\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\forall x\)

Dấu \("="\) xảy ra khi: \(\left|x+\dfrac{2}{3}\right|=0\Leftrightarrow x+\dfrac{2}{3}=0\Leftrightarrow x=-\dfrac{2}{3}\)

Vậy \(Min_M=-\dfrac{3}{5}\) khi \(x=-\dfrac{2}{3}\).

\(---\)

c) Ta thấy: \(\left|\dfrac{7}{4}-x\right|\ge0\forall x\)

\(\Rightarrow-\left|\dfrac{7}{4}-x\right|\le0\forall x\)

\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\forall x\)

Dấu \("="\) xảy ra khi: \(\left|\dfrac{7}{4}-x\right|=0\Leftrightarrow\dfrac{7}{4}-x=0\Leftrightarrow x=\dfrac{7}{4}\)

Vậy \(Max_N=-8\) khi \(x=\dfrac{7}{4}\).

23 tháng 10 2023

a) Ta có: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)

\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)

Dấu "=" xảy ra khi:

\(\dfrac{2}{5}-x=0\)

\(\Rightarrow x=\dfrac{2}{5}\)

Vậy: ... 

b) Ta có: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)

\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\)

Dấu "=" xảy ra:

\(x+\dfrac{2}{3}=0\)

\(\Rightarrow x=-\dfrac{2}{3}\)

Vậy: ...

c) Ta có: \(-\left|\dfrac{7}{4}-x\right|\le0\forall x\)

\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\)

Dấu "=" xảy ra:

\(\dfrac{7}{4}-x=0\)

\(\Rightarrow x=\dfrac{7}{4}\)

Vậy: ...

14 tháng 3 2020

Vì \(\left(x^2-9\right)^2\ge0\)\(\forall x\inℝ\)\(\left|y-2\right|\ge0\)\(\forall y\inℝ\)

\(\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|\text{​​}\ge0\)\(\forall x,y\inℝ\)\(\Rightarrow\)\(\left(x^2-9\right)^2+\left|y-2\right|\text{​​}+10\ge10\)\(\forall x,y\inℝ\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=9\\y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm3\\y=2\end{cases}}\).

Vậy GTNN Q = 10 khi y = 2 và x = ±3 

23 tháng 8 2015

a) |x+2|+|3-x|>=|x+2+3-x|=|5|=5

dau "=" xay ra khi va chi khi (x+2)(3-x)>=0

=>x>=-2 hoặc x<=3

vạy GTNN cua bieu thuc la 5 khi va chi khi ...

b)cau b tuong tu

c) vi |x+1|>=0

|y+2|>=0

=>|x+1|+|y+2|>=0 dau "=" xay ra khi va chi khi x+1=0 va y+2=0

=>x=-1 va y=-2

vay GTNN cua bieu thuc la 0 khi va chi khi x=-1 va y=-2

7 tháng 3 2022

a, Ta có: \(\left(x-1\right)^4\ge0\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

\(\Rightarrow M=\left(x-1\right)^4+\dfrac{1}{4}\ge\dfrac{1}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

Vậy \(M_{min}=\dfrac{1}{4}\Leftrightarrow x=1\)

b, Ta có: \(\left(2x-1\right)^2\ge0\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)

\(\left|y-1\right|\ge0\forall y\)

Dấu "=" xảy ra \(\Leftrightarrow y=1\)

\(\Rightarrow N=3+\left(2x-1\right)^2+\left|y-1\right|\ge3\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=1\end{matrix}\right.\)

Vậy \(N_{min}=3\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=1\end{matrix}\right.\)

7 tháng 3 2022

cảm ơn

17 tháng 1 2022

Ta có \(A=\left|x+2\right|+\left|x-3\right|\)

\(A=\left|x+2\right|+\left|3-x\right|\)(vì \(\left|X\right|=\left|-X\right|\))

Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\), ta có:

\(A\ge\left|x+2+3-x\right|=\left|5\right|=5\)

Dấu "=" xảy ra khi \(\left(x+2\right)\left(3-x\right)\ge0\). Có 2 trường hợp:

TH1: \(\hept{\begin{cases}x+2\ge0\\3-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-2\\x\le3\end{cases}}\Leftrightarrow-2\le x\le3\)

TH2: \(\hept{\begin{cases}x+2\le0\\3-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-2\\x\ge3\end{cases}}\)(vô lí)

Vậy GTNN của A là 5 khi \(-2\le x\le3\)

Đk: x >/ 3

A=x+2√x−3=x−3+2√x−3+3=(√x−3+1)2+2A=x+2x−3=x−3+2x−3+3=(x−3+1)2+2

Ta có: √x−3≥0⇔(√x−3+1)2≥1⇔(√x−3+1)2+2≥3⇔A≥3x−3≥0⇔(x−3+1)2≥1⇔(x−3+1)2+2≥3⇔A≥3

d=xrk x=3 (N)

hok tốt