cho \(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}\left(a;b;c;d\ne0\right)\)
\(A=\frac{2011a-2010b}{c+d}+\frac{2011b-2010c}{a+d}+\frac{2011c-2010d}{a+b}+\frac{2011d-2010a}{b+c}=?\)
tinhs A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
=> a = b = c = d
=> \(D=\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}\)
D = 1 + 1 + 1 + 1 = 4
Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\) (đề bài)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{d}=1\\\frac{d}{a}=1\end{cases}\Rightarrow\begin{cases}a=b\\b=c\\c=d\\d=a\end{cases}\)
\(\Rightarrow a=b=c=d\)
Thay \(b=a\) ; \(c=a\) ; \(d=a\) vào biểu thức \(M=\frac{2a-b}{c+d}=\frac{2b-c}{d+a}=\frac{2c-d}{a+b}=\frac{2d-a}{b+c}\) ta có :
\(M=\frac{2a-a}{a+a}=\frac{2a-a}{a+a}=\frac{2a-a}{a+a}=\frac{2a-a}{a+a}\)
\(M=\frac{1a}{2a}=\frac{1a}{2a}=\frac{1a}{2a}=\frac{1a}{2a}=\frac{1}{2}\)
Vậy \(M=\frac{1}{2}\)
\(\frac{a}{2b}\)=\(\frac{b}{2c}\) =\(\frac{c}{2d}\) =\(\frac{d}{2a}\)=\(\frac{a+b+c+d}{2a+2b+2c+2d}\)=\(\frac{a+b+c+d}{2\left(a+b+c+d\right)}\)=\(\frac{1}{2}\)
quên rùi............................
đáp số =2
Áp dụng TC DTSBN ta có :
\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2b+2c+2d+2a}=\frac{a+b+c+d}{2\left(a+b+c+d\right)}=\frac{1}{2}\)
\(\Rightarrow\frac{a}{2b}=\frac{1}{2}\Rightarrow a=\frac{1}{2}.2b\Rightarrow a=b\) (1)
\(\Rightarrow\frac{b}{2c}=\frac{1}{2}\Rightarrow b=\frac{1}{2}.2c\Rightarrow b=c\) (2)
\(\Rightarrow\frac{c}{2a}=\frac{1}{2}\Rightarrow c=\frac{1}{2}.2a\Rightarrow c=a\) (3)
\(\Rightarrow\frac{d}{2a}=\frac{1}{2}\Rightarrow d=\frac{1}{2}.2a\Rightarrow d=a\) (4)
Từ (1);(2);(3):(4) \(\Rightarrow a=b=c=d\) .Thay vào A ta được :
\(A=\frac{2011a-2010a}{a+a}+\frac{2011a+2010a}{a+a}+\frac{2011a-2010a}{a+a}+\frac{2011a-2010a}{a+a}\)
\(=\frac{a}{2a}+\frac{4021a}{2a}+\frac{a}{2a}+\frac{a}{2a}=\frac{a+4021a+a+a}{2a}=\frac{4024a}{2a}=\frac{4024}{2}=2012\)
Vậy \(A=2012\)
\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2b+2c+2d+2a}=\frac{a+b+c+d}{2\left(a+b+c+d+\right)}=\frac{1}{2}\)=\(\frac{1}{2}\)
\(\Rightarrow2a=2b,2b=2c,2c=2d,2d=2a\)
\(\Leftrightarrow a=b=c=d\)
\(\Rightarrow A=\frac{2011a-2010b}{c+d}+\frac{2011b-2010c}{a+d}+\frac{2011c-2010d}{a+b}=\frac{2011d-2010a}{b+c}\)
\(\Leftrightarrow A=\frac{2011a-2010a}{a+a}+\frac{2011b-2010b}{b+b}+\frac{2011c-2010c}{c+c}+\frac{2011d-2010d}{d+d}\)
\(\Leftrightarrow A=\frac{a}{2a}+\frac{b}{2b}+\frac{c}{2c}+\frac{d}{2d}\)
\(\Leftrightarrow A=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2\)