cho A=1/101+1/102+1/103+...+1/200 Chứng minh rằng A > 5/8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(C=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{120}\right)+\left(\dfrac{1}{121}+\dfrac{1}{122}+\dfrac{1}{123}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+\dfrac{1}{153}+...+\dfrac{1}{180}\right)+\left(\dfrac{1}{181}+\dfrac{1}{182}+\dfrac{1}{183}+...+\dfrac{1}{200}\right)\)
\(\Leftrightarrow C>20\cdot\dfrac{1}{120}+30\cdot\dfrac{1}{150}+30\cdot\dfrac{1}{180}+20\cdot\dfrac{1}{200}\)
\(\Leftrightarrow C>\dfrac{1}{6}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{10}=\dfrac{19}{30}=\dfrac{76}{120}\)
\(\Leftrightarrow C>\dfrac{75}{120}=\dfrac{5}{8}\)
hay \(C>\dfrac{5}{8}\)(đpcm)
Ta có:
\(c=\)\(\frac{1}{101}\)\(+\)\(\frac{1}{102}\)\(+\)\(\frac{1}{103}\)\(+\)...\(+\)\(\frac{1}{200}\)
\(c=\)(\(\frac{1}{101}\)\(+\)\(\frac{1}{102}\)\(+\)...\(+\)\(\frac{1}{120}\))\(+\)(\(\frac{1}{121}\)\(+\)\(\frac{1}{122}\)\(+\)...\(+\)\(\frac{1}{150}\))\(+\)(\(\frac{1}{151}\)\(+\)\(\frac{1}{152}\)\(+\)...\(+\)\(\frac{1}{180}\))\(+\)(\(\frac{1}{181}\)\(+\)\(\frac{1}{182}\)\(+\)...\(+\)\(\frac{1}{200}\))>20\(.\)\(\frac{1}{120}\)\(+\)30\(.\)\(\frac{1}{150}\)\(+\)30\(.\)\(\frac{1}{180}\)\(+\)20\(.\)\(\frac{1}{200}\)= \(\frac{1}{6}+\frac{1}{5}\)\(+\)\(\frac{2}{6}+\frac{1}{10}\)= \(\frac{19}{30}\)=\(\frac{76}{120}\)> \(\frac{75}{120}\)=\(\frac{5}{8}\)
=>\(c\)>\(\frac{5}{8}\)(đpcm)
_Hok tốt_
a ) Số lượng số của dãy số trên là :
\(\left(200-101\right):1+1=100\) ( số )
Do \(100⋮2\)nên ta nhóm dãy số trên thành 2 nhóm như sau :
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)
\(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};...;\frac{1}{149}>\frac{1}{150};\frac{1}{150}=\frac{1}{150}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\left(1\right)\)
\(\frac{1}{151}>\frac{1}{200};\frac{1}{152}>\frac{1}{200};...;\frac{1}{199}>\frac{1}{200};\frac{1}{200}=\frac{1}{200}\)
\(\Rightarrow\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}>\frac{1}{200}.50=\frac{1}{4}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{3}+\frac{1}{4}=\frac{7}{2}\left(3\right)\)
\(\frac{1}{101}< \frac{1}{100};\frac{1}{102}< \frac{1}{100};...;\frac{1}{199}< \frac{1}{100};\frac{1}{200}< \frac{1}{100}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< \frac{1}{100}.100=1\left(4\right)\)
Từ \(\left(3\right);\left(4\right)\Rightarrowđpcm\)
b ) Số lượng số dãy số trên là :
\(\left(150-101\right):1+1=50\)( số )
Ta có : \(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};\frac{1}{103}>\frac{1}{150};...;\frac{1}{150}=\frac{1}{150}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\)
\(\Rightarrowđpcm\)
a) \(A=\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+\frac{1}{221}+\frac{1}{357}+\frac{1}{525}\)
\(\Rightarrow A=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{21.25}\)
\(\Rightarrow4A=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{21.25}\)
\(4A=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{21}-\frac{1}{25}\)
\(4A=\frac{1}{1}-\frac{1}{25}=\frac{24}{25}\)
\(\Rightarrow A=\frac{24}{25}\div4=\frac{6}{25}