huhu giúp mình câu 4 với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4:
a: góc OAT+góc OMT=180 độ
=>OATM nội tiếp
b: Xét ΔAMC và ΔEOD có
góc MAC=góc OED
góc MCA=góc EDO
=>ΔAMC đồng dạng với ΔEOD
\(\Delta'=3-\left(-6\right)=9>0\)
vậy pt có 2 nghiệm pb
\(x_1=\sqrt{3}-3;x_2=\sqrt{3}+3\)
\(P=\dfrac{\sqrt{x}}{2\sqrt{x}-3}\)
\(\Leftrightarrow2P=\dfrac{2\sqrt{x}}{2\sqrt{x}-3}=1+\dfrac{3}{2\sqrt{x}-3}\)
Để \(P\in Z\) hay \(2P\in Z\) <=> \(\dfrac{3}{2\sqrt{x}-3}\in Z\)
Có \(x\in Z\)\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}\in Z^+\\\sqrt{x}\in I\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x}-3\in Z\\2\sqrt{x}-3\in I\end{matrix}\right.\)
Trường hợp \(2\sqrt{x}-3\in I\) => \(\dfrac{3}{2\sqrt{x}-3}\notin Z\forall x\) thỏa mãn đk (L)
Trường hợp \(2\sqrt{x}-3\in Z\)
Để \(\dfrac{3}{2\sqrt{x}-3}\in Z\) <=> \(2\sqrt{x}-3\inƯ\left(3\right)=\left\{-1;1;-3;3\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{1;2;0;3\right\}\) mà \(\sqrt{x}>0;\sqrt{x}\ne2\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\)
Vậy...
(Kí hiệu I là số vô tỉ)
Đường thẳng d có 1 vtpt là \(\left(1;-2\right)\)
Đường thẳng \(d'\) vuông góc d nên có 1 vtpt là (2;1) (đảo thứ tự tọa độ vtpt của d và đảo dấu 1 trong 2 vị trí tùy thích)
Phương trình d':
\(2\left(x+1\right)+1\left(y-1\right)=0\Leftrightarrow2x+y+1=0\)
a) \(M_X=M_{Br2}=160\) (đvC)
b) CT của hợp chất : X2O3
Ta có : \(2X+16.3=160\)
=> X=56
Vậy X là Fe
Bài 5:
a: 2x-(3-5x)=4(x+3)
=>2x-3+5x=4x+12
=>7x-3=4x+12
=>3x=15
=>x=5
b: =>5/3x-2/3+x=1+5/2-3/2x
=>25/6x=25/6
=>x=1
c: 3x-2=2x-3
=>3x-2x=-3+2
=>x=-1
d: =>2u+27=4u+27
=>u=0
e: =>5-x+6=12-8x
=>-x+11=12-8x
=>7x=1
=>x=1/7
f: =>-90+12x=-45+6x
=>12x-90=6x-45
=>6x-45=0
=>x=9/2
Lời giải:
a.
Tứ giác $ADME$ có 3 góc vuông: $\widehat{D}=\widehat{A}=\widehat{E}=90^0$ nên là hình chữ nhật.
b.
Vì $ADME$ là hcn nên $AM=DE$
$MD\perp AB, AB\perp AC\Rightarrow MD\parallel AC$. Áp dụng định lý Talet:
$\frac{BD}{DA}=\frac{BM}{MC}=1\Rightarrow BD=DA\Rightarrow D$ là trung điểm $AB$
Tương tự thì $E$ là trung điểm $AC$
$\Rightarrow DE$ là đường trung bình của tam giác $ABC$ ứng với cạnh $BC$
$\Rightarrow AM=DE=\frac{BC}{2}=\frac{\sqrt{AB^2+AC^2}}{2}=\frac{\sqrt{6^2+8^2}}{2}=5$ (cm)
c.
$S_{AMB}=\frac{BM}{BC}S_{ABC}=\frac{1}{2}S_{ABC}=\frac{1}{2}.\frac{AB.AC}{2}=\frac{6.8}{4}=12$ (cm2)
Điểm H ở đây có vẻ không có giá trị lắm.
Hình vẽ: