K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2021

\(P=\dfrac{\sqrt{x}}{2\sqrt{x}-3}\)

\(\Leftrightarrow2P=\dfrac{2\sqrt{x}}{2\sqrt{x}-3}=1+\dfrac{3}{2\sqrt{x}-3}\)

Để \(P\in Z\) hay \(2P\in Z\) <=> \(\dfrac{3}{2\sqrt{x}-3}\in Z\)

Có \(x\in Z\)\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}\in Z^+\\\sqrt{x}\in I\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x}-3\in Z\\2\sqrt{x}-3\in I\end{matrix}\right.\)

Trường hợp \(2\sqrt{x}-3\in I\) => \(\dfrac{3}{2\sqrt{x}-3}\notin Z\forall x\) thỏa mãn đk (L)

Trường hợp \(2\sqrt{x}-3\in Z\)

Để \(\dfrac{3}{2\sqrt{x}-3}\in Z\) <=> \(2\sqrt{x}-3\inƯ\left(3\right)=\left\{-1;1;-3;3\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{1;2;0;3\right\}\) mà \(\sqrt{x}>0;\sqrt{x}\ne2\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\)

Vậy...

(Kí hiệu I là số vô tỉ)

24 tháng 2 2022

\(\Delta'=3-\left(-6\right)=9>0\)

vậy pt có 2 nghiệm pb 

\(x_1=\sqrt{3}-3;x_2=\sqrt{3}+3\)

4:

a: góc OAT+góc OMT=180 độ

=>OATM nội tiếp

b: Xét ΔAMC và ΔEOD có

góc MAC=góc OED

góc MCA=góc EDO

=>ΔAMC đồng dạng với ΔEOD

a: Ta có: BC⊥BA tại B

nên BC là tiếp tuyến của (A;AB)

b: Xét (A) có 

CB là tiếp tuyến

CD là tiếp tuyến

Do đó: CB=CD
hay C nằm trên đường trung trực của BD(1)

Ta có: AB=AD

nên A nằm trên đường trung trực của BD(2)

Từ (1) và (2) suy ra AC là đường trung trực của BD

hay AC\(\perp\)BD

12 tháng 1 2022

Giúp mình luôn câu c d được không:((( sắp hết h rồi mà không bt làm

a: Xét ΔSBM và ΔSNB có 

\(\widehat{SBM}=\widehat{SNB}\)

\(\widehat{BSM}\) chung

Do đó: ΔSBM\(\sim\)ΔSNB

Suy ra: SB/SN=SM/SB

hay \(SB^2=SM\cdot SN\)

b: Xét (O) có

SA là tiếp tuyến

SB là tiếp tuyến

Do đó: SA=SB

mà OA=OB

nên SO là đường trung trực của AB

=>SO⊥AB

Xét ΔOBS vuông tại B có BH là đường cao

nên \(SH\cdot SO=SB^2=SM\cdot SN\)

14 tháng 10 2021

Bài 4: 

b: Xét ΔABK vuông tại A có AD là đường cao ứng với cạnh huyền BK

nên \(BD\cdot BK=BA^2\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(BH\cdot BC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BD\cdot BK=BH\cdot BC\)

14 tháng 10 2021

em cảm ơn ạ nhưng mà e cần CM câu c chứ ko phải là câu b ạ

28 tháng 9 2019

Oops căn bao gồm x+1 @@ sai đề bài 1 tẹo