K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2014

thực hiện trừ 2 vế ta (vế trái cho vế phải) ta được 

(a+b+c).(a2+b2+c2-ab-bc-ca)=0

nên hoặc a+b+c=0 hoặc nhân tử còn lại bằng 0

mà a,b,c là 3 cạnh 1 tam giác nên a+b+c>0

vậy a2+b2+c2-ab-bc-bc-ca=0

đặt đa thức đó bằng A

A=0 nên 2xA=0

phân tích thành hằng đẳng thức ta có (a-b)2+(b-c)2+(c-a)2=0

nên a=b=c vậy là tam giác đều

 

24 tháng 3 2017

mình nghĩ là tam giác đều

7 tháng 7 2017

thực hiện trừ 2 vế ta (vế trái cho vế phải) ta được

(a+b+c).(a^2+b^2+c^2 -ab-bc-ca)=0

nên hoặc a+b+c=0 hoặc nhân tử còn lại bằng 0

mà a,b,c là 3 cạnh 1 tam giác nên a+b+c>0

vậy a^2+b^2+c^2 -ab-bc-bc-ca=0

đặt đa thức đó bằng A

A=0 nên 2xA=0

phân tích thành hằng đẳng thức ta có (a-b)2+(b-c)2+(c-a)2=0

nên a=b=c vậy là tam giác đều 

AH
Akai Haruma
Giáo viên
21 tháng 10

Lời giải:

$a^3+b^3+c^3=3abc$

$\Leftrightarrow (a+b)^3-3ab(a+b)+c^3-3abc=0$

$\Leftrightarrow (a+b)^3+c^3-3ab(a+b+c)=0$

$\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0$

$\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0$

Hiển nhiên $a+b+c>0$ với mọi $a,b,c$ là độ dài 3 cạnh tam giác.

$\Rightarrow a^2+b^2+c^2-ab-bc-ac=0$

$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$

Do mỗi số $(a-b)^2; (b-c)^2; (c-a)^2\geq 0$ với mọi $a,b,c>0$.

$\Rightarrow$ để tổng của chúng bằng $0$ thì:

$(a-b)^2=(b-c)^2=(c-a)^2=0$

$\Rightarrow a=b=c$

$\Rightarrow ABC$ là tam giác đều.

6 tháng 1 2018

C/m \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

+) Từ giải thiết suy ra : \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Rightarrow\)\(a^2+b^2+c^2-ab-bc-ca=0\)( Vì a + b + c > 0 )

+) Biến đổi được kết quả : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\)\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)\(\Rightarrow\)Tam giác đó là tam giác đề ( đpcm 0

Vậy tam giác đó là tam giác đều

6 tháng 1 2018

            \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\)\(\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

Vì  \(a,b,c\)là độ dài 3 cạnh của tam giác nên  \(a+b+c=0\)

\(\Rightarrow\)\(a^2+b^2+c^2-ab-bc-ac=0\)

\(\Rightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2-\left(c-a\right)^2=0\)              (mk lm tắt nhé)

\(\Rightarrow\)\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)\(\Rightarrow\)\(a=b=c\)

Vậy  tam giác đó là tam giác đều

2 tháng 10 2019

dễ mà bạn . áp dụng bất đẳng thức cô-si cho ba số không âm ta có:

a^3+b^3+c^3>=3\(\sqrt[3]{a^3b^3c^3}\)=>a^3+b^3+c^3>=3abc.

dấu bằng xảy ra khi a=b=c. vậy nếu a^3+b^3+c^3=3abc thì a=b=c hay tam giac ABC là tam giác đều!!!!!!

2 tháng 10 2019

bất đẳng thức cô-si là một trong những BĐT cơ bản rất hay sử dụng khi thi HSG toán 8\(\frac{a+b}{2}>=\sqrt{ab}\)

Chứng minh (\(\left(\sqrt{a}-\sqrt{b}\right)^2>=0\)=>\(a+b>=2\sqrt{ab}\)=>\(\frac{a+b}{2}>=\sqrt{ab}\)vậy nhé !!!!

4 tháng 12 2016

\(a^2+b^2+c^2=ab+bc+ac\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\)

Vậy tam giác đó là tam giác đều 

4 tháng 12 2016

\(a^2+b^2+c^2=ab+bc+ac\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\left(1\right)\)

vi   \(\left(a-b\right)^2\ge0\)

 \(\left(a-c\right)^2\ge0\)

\(\left(b-c\right)^2\ge0\)

de \(\left(1\right)\) xay ra thi \(\hept{\begin{cases}a-b=0\\a-c=0\\b-c=0\end{cases}\Leftrightarrow a=b=c}\)

         \(\Leftrightarrow\)do la tam giac deu

12 tháng 3 2017

\(a^3-b^3-c^3=3abc\)

\(\Rightarrow a^3-b^3-c^3-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Mà \(a+b+c\ne0\) (độ dài 3 cạnh của 1 tam giác)

\(\Rightarrow a^2+b^2+c^2-ab-bc-ac=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\left(a-b\right)^2=0;\left(b-c\right)^2=0;\left(c-a\right)^2=0\)

\(\Rightarrow a=b=c\)

Do đó tam giác ABC là tam giác đều 

13 tháng 3 2017

a = b = c nha!

tk nha

10 tháng 11 2018

Nếu Đặt p là nửa chu vi => p = (a + b + c)/2 => 2p = a + b + c 
=> p - a = (a + b + c)/2 - a 
=> p - a = (b + c + a - 2a)/2 
=> p - a = (b + c - a)/2 
=> 2(p - a) = b + c - a (1) 
Tương tự ta chứng minh được: 
2(p - b) = a + c - b (2) 
2(p - c) = a + b - c (3) 
Từ (1); (2) và (3) => 1/(a + b - c) + 1/(b +c - a) +1/(c +a - b) 
= 1/[ 2(p - c) ] + 1/[ 2(p - a) ] + 1/[ 2(p - b) ] 
=1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] 
Bây giờ ta đã đưa bài toán về chứng minh 
1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c 
Ta có: (x - y)² ≥ 0 
<=> x² - 2xy + y² ≥ 0 
<=> x² - 2xy + y² + 4xy ≥ 4xy 
<=> x² + 2xy + y² ≥ 4xy 
<=> (x + y)² ≥ 4xy 
=> với x + y ≠ 0 và xy ≠ 0 
=> (x + y)²/(x+ y) ≥ 4xy/(x + y) 
=> (x + y) ≥ 4xy/(x + y) 
=> (x + y)/xy ≥ (4xy)/[xy(x + y)] 
=> 1/x + 1/y ≥ 4/(x + y) (*) 
Áp dụng (*) với x = p - a và y = p - b ta được: 
1/(p - a) + 1/(p - b) ≥ 4/(p - a + p - b) 
=> 1/(p - a) + 1/(p - b) ≥ 4/(2p - a - b) 
=> 1/(p - a) + 1/(p - b) ≥ 4/(a + b + c - a - b) 
=> 1/(p - a) + 1/(p - b) ≥ 4/c (4) 
Chứng minh tương tự ta được: 
1/(p - a) + 1/(p - c) ≥ 4/b (5) 
1/(p - b) + 1/(p - c) ≥ 4/a (6) 
Cộng vế với vế của (4);(5) và (6) ta được: 
1/(p - a) + 1/(p - b) + 1/(p - a) + 1/(p - c) + 1/(p - b) + 1/(p - c) ≥ 4/c + 4/b + 4/a 
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4/c + 4/b + 4/a 
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4(1/a + 1/b + 1/c) 
=> 1/(p - a) + 1/(p - b) + 1/(p - c) ≥ 2(1/a + 1/b + 1/c) 
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/2.( 2(1/a + 1/b + 1/c) ) 
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c 
Dấu bằng xảy ra <=> a = b = c. 

15 tháng 5 2015

bạn vào câu hỏi tương tự ấy !!! Nó để là tam giác đều !!!

13 tháng 3 2017

tink cho minh nhe

18 tháng 7 2018

Ta có; \(a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Mà \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)

Vậy...

AH
Akai Haruma
Giáo viên
21 tháng 10

Lời giải:

$(a-b)^2=(b-c)^2$

$\Rightarrow (a-b)^2-(b-c)^2=0$

$\Rightarrow (a-b-b+c)(a-b+b-c)=0$

$\Rightarrow (a-2b+c)(a-c)=0$

$\Rightarrow a=c$ hoặc $a+c=2b$

Không đủ cơ sở để khẳng định ABC là tam giác đều bạn nhé.