Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(a-b\right)^2\ge0\) ( với mọi độ dài a, b )
\(\left(b-c\right)^2\ge0\) ( với mọi độ dài b, c )
Mà \(\left(a-b\right)^2+\left(b-c\right)^2=0\)
\(\Rightarrow\)\(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\end{cases}}\)
\(\Rightarrow\)\(\hept{\begin{cases}a-b=0\\b-c=0\end{cases}}\)
\(\Rightarrow\)\(\hept{\begin{cases}a=b\\b=c\end{cases}}\) ( chuyển vế )
Do đó :
\(a=b=c\)
Suy ra : tam giác ABC là tam giác đều
Vậy tam giác ABC là tam giác đều
Chúc bạn học tốt ~
Ta có \(\left(a-b\right)^2\ge0\)với mọi độ dài của a, b
và \(\left(b-c\right)^2\ge0\)với mọi độ dài của b, c
Mà \(\left(a-b\right)^2+\left(b-c\right)^2=0\)(gt)
=> \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\end{cases}}\)=> \(\hept{\begin{cases}a-b=0\\b-c=0\end{cases}}\)=> \(\hept{\begin{cases}a=b\\b=c\end{cases}}\)=> a = b = c
=> \(\Delta ABC\)đều (đpcm)
Lời giải:
$(a-b)^2=(b-c)^2$
$\Rightarrow (a-b)^2-(b-c)^2=0$
$\Rightarrow (a-b-b+c)(a-b+b-c)=0$
$\Rightarrow (a-2b+c)(a-c)=0$
$\Rightarrow a=c$ hoặc $a+c=2b$
Không đủ cơ sở để khẳng định ABC là tam giác đều bạn nhé.