Chứng minh rằng : Có 1 số tự nhiên mà 4 chữ số cuối cùng là 2018 và chia hết cho 2017 ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dễ bà cố nôi người ta luôn.255555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555ddos in my laohg losaho aiohf lafohw aljo
Giả sử ta có dãy số gồm 2018 số được tạo bởi toàn chữ số 2
2; 22; 222;....;2222....22 (2018 chữ số 2)
Khi chia lần lượt các số trong dãy cho 2018 thì số dư của các phép chia nằm trong khoảng từ 1 đến 2017 (2017 số dư)
Theo nguyên lý dirichlet có ít nhất 2 số khi chia cho 2018 có cùng số dư
Giả sử có 2 số khi chia cho 2018 có cùng số dư là là
An=222.......22 (n chữ số 2)
Am=22222...22222 (m chữ số 2)
n<m
Khi đó hiệu của hai số mà khi chia cho 1 số có cùng số dư thì hiệu đó chia hết cho số chia
=> Am-An=22222..22 - 2222...2 =222222...0000 (n chữ số 0 và m-n chữ số 2) chia hết cho 2018 (dpcm)
Bài cô Huệ ra khó nhỉ,mk cũng đang chết tắt với cái bài đội tuyển đây