Chứng minh rằng :
C = 44...4 ( n chữ số 4 ) không là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt 11...1(n chữ số 1)=a
Thì 9a+1=10n
\(\Rightarrow M=...\)
\(=a.\left(9a+1\right)+a+4a+1\)
\(=9a^2+6a+1=\left(3a+1\right)^2\)
Ta thấy: \(A=4^4+44^{44}+444^{444}+4444^{4444}+2007\)
\(=4^4+44^{44}+444^{444}+4444^{4444}+4.501+3\)
\(=4.k+3\)
Vì số chính phương không thể có dạng \(4k+3\)nên A không phải số chính phương
chưa ai giúp bạn sao : olm tới rồi!
C = \(\overline{44444.......44}\) (n chữ số 4)
C = 4. \(\overline{11111.....111}\) ( chữ số 1)
giả sử C là một số chính phương thì
⇔ 4. \(\overline{1111.......111}\) là một số chính phương
vì 4 là một số chính phương nên
⇔ \(\overline{11111.....111}\) là một số chính phương
một số chính phương có tận cùng là 1 thì chữ số hàng chục phải là chữ số chẵn. mà \(\overline{1111.....111}\) lại có chữ số hàng chục là chữ số lẻ nên \(\overline{111....111}\) là một số chính phương là sai . dẫn đến điều giả sử là sai .
vậy C = \(\overline{44444...444}\) không phải là một số chính phương (đpcm)
lấy n = 2, ta thấy 44 không phải là số chính phương.