Câu 17: Cho ABC có AB = AC và = 2 có dạng đặc biệt nào:A. Tam giác cân B. Tam giác đều C. Tam giác vuông D. Tam giác vuông cânCâu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:A. 7cm B. 12,5cm C. 5cm D. Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại: A. Đỉnh A B. Đỉnh B C....
Đọc tiếp
Câu 17: Cho ABC có AB = AC và = 2 có dạng đặc biệt nào:
A. Tam giác cân B. Tam giác đều
C. Tam giác vuông D. Tam giác vuông cân
Câu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:
A. 7cm B. 12,5cm C. 5cm D.
Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại:
A. Đỉnh A B. Đỉnh B C. Đỉnh C D. Tất cả đều sai
Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?
A. ABM = ACM B. ABM= AMC
C. AMB= AMC= 900 D. AM là tia phân giác CBA
Câu 21: Cho tam giác đều ABC độ dài cạnh là 6cm. Kẻ AH vuông góc với BC(H thuộc BC). Độ dài AH là:
A. cm B. 3cm C. cm D. cm
Câu 22: Cho ABC= DEF. Khi đó: .
A. BC = DF B. AC = DF
C. AB = DF D. góc A = góc E
Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:
A. PQ =5cm B. QR= 5cm C. PR= 5cm D.FE= 5cm
Câu 24. Cho tam giác MNP cân tại M, . Khi đó,
A. B. C. D.
Câu 25 : Cho ABC= MNP biết thì:
A. MNP vuông tại P B. MNP vuông tại M
C. MNP vuông tại N D. ABC vuông tại A
a) Xét tam giác vuông ECA và EDA có:
Cạnh EA chung
CA = DA (gt)
\(\Rightarrow\Delta ECA=\Delta EDA\) (Cạnh huyền, cạnh góc vuông)
\(\Rightarrow\widehat{CAE}=\widehat{DAE}\) (Hai cạnh tương ứng)
Hya AE là phân giác góc CAB.
b) Theo câu a, \(\Delta ECA=\Delta EDA\Rightarrow EC=ED\)
Ta có EC = ED; AC = AD nên AE là trung trực của CD.
c) Kẻ CH vuông góc AB.
Ta luôn có D nằm giữa B và H nên HD < HB
Vậy thì CD < CB (Quan hệ đường xiên hình chiếu)
d) Ta có I là trung điểm của CD; M là trung điểm của BC nên DM, BI là các đường trung tuyến của tam giác BCD.
Vậy G là trọng tâm hay CK cũng có trung tuyến.
Vậy K là trung điểm BD.