K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 6 2021

\(sinC=\dfrac{AB}{BC}\Rightarrow BC=\dfrac{AB}{sinC}=\dfrac{17}{sin62^0}\approx19,3\left(cm\right)\)

\(AM=\dfrac{1}{2}BC\approx9,65\left(cm\right)\)

c: Xét ΔABC vuông tại A có 

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC=2a\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{a}{a\sqrt{5}}=\dfrac{\sqrt{5}}{5}\)

\(\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{2a}{a\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)

\(\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{a}{2a}=\dfrac{1}{2}\)

\(\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{2a}{a}=2\)

11 tháng 7 2016

A B C 17cm 40 ? ? ?

Tam giác ABC vuông tại A: 

\(tanB=\frac{AC}{AB}\Rightarrow AC=\tan B.AB=\tan40^o.17\approx14,265cm\)

\(\cos B=\frac{AB}{BC}\Rightarrow BC=\frac{AB}{\cos B}=\frac{17}{cos40^o}\approx22,192cm\)

\(\cos C=\frac{AC}{BC}=\frac{14,265}{22,192}\approx0,643\Rightarrow C\approx50^o\)

22 tháng 8 2021

a) Xét tam giác ABC có:

\(AC^2+BC^2=225+64=289=AB^2\)

Nên tam giác ABC vuông tại A.

b) Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông, ta được:

\(CK=\dfrac{AC\cdot BC}{AB}=\dfrac{15\cdot8}{17}=\dfrac{120}{17}\left(cm\right)\\BK=\dfrac{BC^2}{AB}=\dfrac{64}{17}\left(cm\right)\)

Áp dụng hệ thức về cạnh và góc trong tam giác vuông, ta được:

\(\sin B=\dfrac{CK}{BC}=\dfrac{15}{17}\\ \Rightarrow\widehat{B}\approx62^0\)

\(\sin C=\dfrac{BK}{BC}=\dfrac{8}{17}\\ \Rightarrow\widehat{C}\approx28^0\)

a: Xét ΔABC có \(AB^2=AC^2+BC^2\)

nên ΔBAC vuông tại C

19 tháng 11 2021

\(AB=\sqrt{BC^2-AC^2}=15\left(cm\right)\left(pytago\right)\\ \sin B=\dfrac{AC}{BC}=\dfrac{8}{17}\approx\sin28^0\\ \Rightarrow\widehat{B}\approx28^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx62^0\)

Kẻ AH,KC vuông góc với CB,AB

ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

=>HB=HC=8cm

=>AH=15cm

AH*BC=CK*AB

=>CK*17=15*16=240

=>CK=240/17cm