K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2017

ta có dạng tổng quát sau : 1/ 2 = 1/(2*1)
                                       1/6 = 1/(2*3)
                                       1/12 = 1/(3*4)
                                       ....................
                                       1/n = 1/(x-1)x 
cộng vế theo vế ta có : 
\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+.....+\frac{1}{x\left(x-1\right)}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{\left(x-1\right)}-\frac{1}{x}\)
\(=1-\frac{1}{x}\)
Mà A = 49/50
Nên \(1-\frac{1}{x}=\frac{49}{50}\)
\(\frac{1}{x}=1-\frac{49}{50}=\frac{1}{50}\)
\(x=50\)
\(n=x\left(x-1\right)=50\times49=2450\)
Vậy n = 2450

5 tháng 2 2017

cảm ơn bn nha

12 tháng 2 2017

Ta phân tích:

\(\frac{1}{2}\)\(\frac{1}{1x2}\)= 1 -\(\frac{1}{2}\)

\(\frac{1}{6}\)\(\frac{1}{2x3}\)\(\frac{1}{2}\)\(\frac{1}{3}\)

.....

\(\frac{1}{n}\)\(\frac{1}{ax\left(a+1\right)}\)\(\frac{1}{a}\)\(\frac{1}{a+1}\)

Ta có:A = \(\frac{1}{2}\)\(\frac{1}{6}\)+ ... + \(\frac{1}{n}\)= 1 -\(\frac{1}{2}\)+ \(\frac{1}{2}\)\(\frac{1}{3}\)+ ... + \(\frac{1}{a}\)\(\frac{1}{a+1}\)\(\frac{49}{50}\)

Hay A = 1 - \(\frac{1}{a+1}\)\(\frac{49}{50}\)

\(\Rightarrow\) \(\frac{1}{a+1}\)= 1 -\(\frac{49}{50}\)

\(\Rightarrow\)\(\frac{1}{a+1}\)\(\frac{1}{50}\)

Vậy (a + 1) = 50 mà n = a x (a+1) => n = (50-1) x 50 = 2450

Ta lấy \(\frac{49}{50}\)trừ đi 5 phân số kia

Sau đó sẽ là phân số .........

Vậy là tìm được n

14 tháng 2 2015

Ta thấy:

1/2 = 1/(1x2) = 1 - 1/2

1/6 = 1/(2x3) = 1/2 - 1/3

1/12 = 1/(3x4) = 1/3 - 1/4

........

Coi 1/n = 1/(ax(a+1)) = 1/a - 1/(a+1)

1 /2 + 1/6 + 1/12 + 1/20 + 1/30 +...+ 1/n = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+1/a - 1/(a+1) = 49/50

=1-1/2+1/2-1/3+1/3-......+1/a-1/a+1

Hay A = 1 - 1/(a+1) = 49/50

=> 1/(a+1) = 1 - 49/50

      1/(a+1) = 1/50

Vậy (a + 1) = 50 mà n = a x (a+1) => n = (50-1) x 50 = 2450

14 tháng 2 2015

Ta thấy:

1/2 = 1/(1x2) = 1 - 1/2

1/6 = 1/(2x3) = 1/2 - 1/3

1/12 = 1/(3x4) = 1/3 - 1/4

........

Coi 1/n = 1/(ax(a+1)) = 1/a - 1/(a+1)

1 /2 + 1/6 + 1/12 + 1/20 + 1/30 +...+ 1/n = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+1/a - 1/(a+1) = 49/50

=1-1/2+1/2-1/3+1/3-......+1/a-1/a+1

Hay A = 1 - 1/(a+1) = 49/50

=> 1/(a+1) = 1 - 49/50

      1/(a+1) = 1/50

Vậy (a + 1) = 50 mà n = a x (a+1) => n = (50-1) x 50 = 2450

29 tháng 12 2015

1/2 = 1/(1x2) = 1 - 1/2  

1/6 = 1/(2x3) = 1/2 - 1/3  

1/12 = 1/(3x4) = 1/3 - 1/4

 ........  

1/n = 1/(ax(a+1)) = 1/a - 1/(a+1)

1 /2 + 1/6 + 1/12 + 1/20 + 1/30 +...+ 1/n = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+1/a - 1/(a+1) = 49/50  

Hay A = 1 - 1/(a+1) = 49/50  

=> 1/(a+1) = 1 - 49/50        

1/(a+1) = 1/50  

Vậy (a + 1) = 50 mà n = a x (a+1) => n = (50-1) x 50 = 2450

1 tháng 4 2019

1/2 = 1/(1x2) = 1 - 1/2

1/6 = 1/(2x3) = 1/2 - 1/3

1/12 = 1/(3x4) = 1/3 - 1/4 ........ 1/n = 1/(nx(n+1)) = 1/n - 1/(n+1) 1 /2 + 1/6 + 1/12 + 1/20 + 1/30 +...+ 1/n = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+1/n - 1/(n+1) = 49/50 Hay A = 1 - 1/(n+1) = 49/50 => 1/(n+1) = 1 - 49/50 1/(n+1) = 1/50 Suy ra n+1=50 nên n=49

12 tháng 12 2019

/2 = 1/(1x2) = 1 - 1/2
1/6 = 1/(2x3) = 1/2 - 1/3
1/12 = 1/(3x4) = 1/3 - 1/4
........
1/n = 1/(nx(n+1)) = 1/n - 1/(n+1)
1 /2 + 1/6 + 1/12 + 1/20 + 1/30 +...+ 1/n = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+1/n - 1/(n+1) = 49/50
Hay A = 1 - 1/(n+1) = 49/50
=> 1/(n+1) = 1 - 49/50
1/(n+1) = 1/50
Suy ra n+1=50 nên n=49

24 tháng 8 2019

1/1.2+1/3.4+1/5.6+...+1/49.50

=1/1-1/2+1/3-1/4+...+1/49-1/50

=1/1+1/2+1/3+1/4+...+1/49+1/50-2(1/2+1/4+1/6+...+1/50)

=1/1+1/2+1/3+1/4+...+1/49+1/50-(1/1+1/2+1/3+1/4+...+1/25)

=1/26+1/27+...+1/50=1/26+1/27+...+1/50(đpcm)

b. 1/1-1/2+1/3-1/4+...+1/99-1/100=99/100

7/12=175/300; 5/6=10/12=250/300; 99/100=297/300

(hình như khúc này đề bài sai hả bạn) bạn tự tính ra nhé

bài 2: a.x+1/10+x/12+x/14+...x+1/20

(x+x+x...+x)+(1/10+1/12+...+1/20)

ko có kết quả sao tìm x được bạn:[

b.x+1/2000+x+2/1999=x+3/1998+x+4/1997

x+1/2000+x+2/1999=x+3/1998+x+4/1997

(x+1/2000+1)+(x+2/1999+1)=(x+3/1998+1)+(x+4/1997+1)

x+2002/2000+x+2002/1999=x+2002/1998+x+2002/1997

x+2002(1/2000+1/1999)=(x+2002)(1/1998+1/1997)

=>(1/2000+1/1999)=(1/1998+1/1997)

x+2002(1/2000+1/1999)-(x+2002)(1/1998+1/1997)=0

(x+2002)(1/2000+1/1999-1/1998-1/1997)=0

(x+2002).0=0

(x+2002)=0

x =0-2002=-2002

Chúc bạn học tốt.

25 tháng 8 2019

yeu

8 tháng 3 2016

Bài này phân tích thành :

1/2 = 1/(1x2) = 1 - 1/2

1/6 = 1/(2x3) = 1/2 - 1/3

1/12 = 1/(3x4) = 1/3 - 1/4

........

1/n = 1/(ax(a+1)) = 1/a - 1/(a+1)

1 /2 + 1/6 + 1/12 + 1/20 + 1/30 +...+ 1/n = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+1/a - 1/(a+1) = 49/50

Hay A = 1 - 1/(a+1) = 49/50

=> 1/(a+1) = 1 - 49/50

      1/(a+1) = 1/50

Vậy (a + 1) = 50 mà n = a x (a+1) => n = (50-1) x 50 = 2450

8 tháng 3 2016

Mình không biết

Mình mới học lớp 4

18 tháng 3 2016

ta co ;      1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+..........+1/a-1/b=49/50                                                                       ước lượng 1/2; 1/3; 1/3; 1/4; 1/5; 1/6; .........; 1/a                                                                                                                  =   1-49/50=1/50;      vậy n = 50                     

18 tháng 3 2016

mình có một mẹo là lấy tử số và mẫu số của kết quả nhân với nhau.mình đã thử nhiều lần và đã đúng

n là:49*50=2450