Từ các số tự nhiên1,2,3,4 lập dc bao số tự nhiên mà các số chỉ xuất hiện 1 lần.tính tổng các số đo
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dạ,mời xem tại đây,mình lười chép :
https://www.toaniq.com/tu-cac-chu-so-1-2-3-4-lap-tat-ca-cac-so-tu-nhien-ma-moi-chu-so-tren-deu-co-mat-dung-mot-lan-tinh-tong-cac-so-ay/
Số chia hết cho 9 mà mỗi số xuất hiện 1 lần.
Ta có: 1+2+3+4+5+6=21
Vậy các số chia hết cho 9 sẽ có tổng các chữ số là 9 hoặc 18
Số có 2 chữ số: 36; 63; 45; 54 => 4 số
Số có 3 chữ số: 126; 621; 162; 612; 216; 261; 234; 243; 342; 324; 432; 423; 135; 153; 351; 315; 513; 531 => 18 số
Số có 4 chữ số: 3456; 3465; 3546; 3564; 3654; 3645 => 6 số x 4 cách đổi = 24 số
Số có 5 chữ số: 12456; 12465; 12564; 12546; 12645; 12654 => Số lượng: 6 x 4 x 5 = 120 số
Tổng thoả mãn: 4+18+24+120= 166(số)
Vì có 11 tổng mà chỉ có thể có 10 chữ số tận cùng đều là các số từ 0 , 1 ,2, …., 9 nên luôn tìm được hai tổng có chữ số tận cùng giống nhau nên hiệu của chúng là một số nguyên có tận cùng là 0 và là số chia hết cho 10.
Vì có 11 tổng mà chỉ có thể có 10 chữ số tận cùng đều là các số từ 0,1,2,...9 nên luôn tìm được hai tổng có chữ số tận cùng giống nhau nên hiệu của chúng là một số nguyên có tận cùng là 0 và là số chia hết cho 10
Giả sử số cần tìm là abcd
Ta thực hiện các bước sau:
Số cần tìm là số tự nhiên nên a ≠ 0 suy ra a = 1. Như vậy ta còn chữ số 1 và hai chữ số 0 để xếp vào 3 vị trí còn lại
Nếu xếp chữ số 0 vào vị trí b thì ta được số cần tìm là 1001 hoặc1010
Nếu xếp chữ số 1 vào vị trí b thì ta được số cần tìm là 1100Vậy ta có ba số cần tìm là 1001; 1010; 1100
Đáp án B
Số tự nhiên có 8 chữ số \(\overline{abcdefgh}\).
TH1: \(h=0\)
\(\overline{abcdefg}\) có \(\dfrac{7!}{2!.3!}=420\) cách lập.
\(\Rightarrow\) Lập được 420 số thỏa mãn yêu cầu.
TH2: \(h=5\)
\(\overline{abcdefg}\) có \(\dfrac{7!}{2!.3!}-\dfrac{6!}{2!.3!}=360\) cách lập.
\(\Rightarrow\) Lập được 360 số thỏa mãn yêu cầu.
Vậy lập được \(420+360=780\) số tự nhiên thỏa mãn yêu cầu bài toán.
Bạn có thể giải thích phần công thức được không vậy. Mình hiểu hơi chậm. Bạn thông cảm. Mình cảm ơn nhiều.
có 4 chữ số 1;2;3;4
số có đủ các chữ số trên mà mỗi chữ số chỉ xuất hiện 1 lần có dạng
\(\overline{abcd}\)
a có 4 cách chọn
b có 3 cách chọn
c có 2 cách chọn
d có 1 có cách chọn
số các số thỏa mãn đề bài là: 4.3.2.1 = 24 (số)
các chữ số : 1;2;3;4 xuất hiện lần lượt ở hàng đơn vị, hàng chục , hàng trăm, hàng nghìn số lần là:
24: 4= 6 (lần)
tổng các số vừa được lập là:
(1+2+3+4)x ( 1+ 10 + 100 + 1000) x 6 = 66660
đs....
số có mấy chữ số ạ ?