K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2021

a) Nếu n \(\ge\) 3 thì n! sẽ chia hết cho 1;2;3;... Ta có:
3m - n! = 1
3(3m-1 - 1.2...) =1 => vô lí vì 1 không chia hết cho 3
=> n <3.
Nếu n = 2 thì 3m - 2! = 1
3m - 2 = 1
3m =3
=> m = 1.
Nếu n =1 thì 3m - 1! = 1
3m - 1 =1
3m =2 => vô lí => loại
Vậy n = 2; m =1.
b) Nếu n \(\ge\)3 thì n! chia hết cho 1;2;3;... Ta có:
 3m - n! = 2 
3(3m-1 - 1.2...) = 2 => vô lí (vì 2 không chia hết cho 3) => n < 3
Nếu n = 2 thì 3m - 2! = 2
3m - 2 = 2
3m = 4 => vô lí => loại
Nếu n = 1 thì 3m - 1! = 2
3m - 1 = 2
3m = 3
=> m = 1.
Vậy n = 1; m = 1

22 tháng 4 2021

Cảm ơn bn !

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
18 tháng 12 2018

A,m=2,3,4,.....

n=8,26,80,.......

B,n=7,25,79,........

18 tháng 12 2018

Mình cần lời giải chi tiết cơ

27 tháng 10 2017

m=1;n=4

m=2;n=3

m=3;n=2

m=4;n=1

28 tháng 10 2017
Ghi cụ thể cách giải cho mình được không ạ?
12 tháng 8 2018

do mk ko là dân toán nên cx không chắc là đúng, sai đâu mog mn bỏ qua

\(m^3+n^3+15mn=125\)

<=>  \(m^3+n^3-125+15mn=0\)

<=>  \(\left(m+n\right)^3-3mn\left(m+n\right)-5^3+15mn=0\)

<=>  \(\left(m+n-5\right)\left[\left(m+n\right)^2+5\left(m+n\right)+5^2\right]-3mn\left(m+n-5\right)=0\)

<=>  \(\left(m+n-5\right)\left(m^2+n^2+5m+5n-mn+25\right)=0\)

TH1:  \(m+n-5=0\)

<=>  \(m+n=5\)

bạn làm tiếp nhé

TH2:  \(m^2+n^2-mn+5\left(m+n\right)+25=0\)

Áp dụng AM-GM ta có:

\(m^2+n^2-mn\ge2\sqrt{m^2.n^2}-mn=2mn-mn=mn\)

Khi đó: 

 \(m^2+n^2-mn+5\left(m+n\right)+25\)

\(\ge mn+5\left(m+n\right)+25\)

Do m,n là các số nguyên dương nên:   \(mn+5\left(m+n\right)+25\ge25\)

=> trường hợp này vô lí

17 tháng 12 2018

toán tuổi thơ 2 số 190