K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2023

a: Thay x=1 vào \(y=-\dfrac{5}{2}x\), ta được:

\(y=-\dfrac{5}{2}\cdot1=-\dfrac{5}{2}\)

Vậy: \(A\left(1;-\dfrac{5}{2}\right)\) thuộc đồ thị hàm số y=-5/2x

b: Thay x=2 vào \(y=-\dfrac{5}{2}x\), ta được:

\(y=-\dfrac{5}{2}\cdot2=-5\)

=>B(2;-5) thuộc đồ thị hàm số y=-5/2x

Thay x=3 vào y=-5/2x, ta được:

\(y=-\dfrac{5}{2}\cdot3=-\dfrac{15}{2}\)<>7

=>\(C\left(3;7\right)\) không thuộc đồ thị hàm số y=-5/2x

Thay x=1 vào y=-5/2x, ta được:

\(y=-\dfrac{5}{2}\cdot1=-\dfrac{5}{2}\)<>5/2

=>\(D\left(1;\dfrac{5}{2}\right)\) không thuộc đồ thị hàm số \(y=-\dfrac{5}{2}x\)

Thay x=0 vào \(y=-\dfrac{5}{2}x\), ta được:

\(y=-\dfrac{5}{2}\cdot0=0\)<>4

=>E(0;4) không thuộc đồ thị hàm số \(y=-\dfrac{5}{2}x\)

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

nên từ đồ thị (C) ta suy ra ngay đồ thị của hàm số :

\(y=\left|\dfrac{x^3}{6}+\dfrac{3x^2}{2}+\dfrac{5x}{2}\right|\) là hình 18

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

6 tháng 9 2023

Với m = 1 

(d1) có dạng y = x + 3

(d2) có dạng y = -x + 3

Phương trình hoành độ giao điểm 

-x + 3 = x + 3

<=> x = 0

Với x = 0 <=> y = 3

Tọa độ giao điểm A(0;3) 

1: Khi m=1 thì (d1): y=x+3 và (d2): y=-x+3

a: loading...

b: Tọa độ giao điểm là:

x+3=-x+3 và y=x+3

=>x=0 và y=3

21 tháng 7 2021

a) undefined

b) Trong các điểm trên, không có điểm nào thuộc đồ thị hàm số.