K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2015

Nếu là số Z   thì có

(x+3)(x+4) = (x+y)2

=>x+3 =1 và x +4 = (x+y)2 =2 loại

=> x+3 =-1  cũng loại

x+4 =1 cũng loại 

x+4 =-1 cũng loại

=> x +3 =0 => x =-3 ; x+y =0 => y =3

hoặc x+4 =0 => x =-4 ; x+y =0 => y =4

Vậy (x;y) = (-3;3);(-4;4)

25 tháng 11 2015

(x+3)(x+4) là 2 số tự nhiên liên tiếp  tích của chúng không là 1 số chính phương  

Vậy không có x;y thuộc N nào thỏa mãn

9 tháng 10 2020

Với \(y\ne\frac{7}{2}\)(Do y nguyên) thì\(y^2+2xy-7x-12=0\Leftrightarrow x\left(7-2y\right)=y^2-12\Leftrightarrow x=\frac{y^2-12}{7-2y}\)

Vì x nguyên nên \(\frac{y^2-12}{7-2y}\)nguyên \(\Rightarrow y^2-12⋮2y-7\Rightarrow4y^2-48⋮2y-7\Rightarrow\left(2y-7\right)^2+14\left(2y-7\right)+1⋮2y-7\Rightarrow1⋮2y-7\)\(\Rightarrow2y-7\inƯ\left(1\right)=\left\{\pm1\right\}\Rightarrow\orbr{\begin{cases}2y-7=-1\\2y-7=1\end{cases}}\Rightarrow\orbr{\begin{cases}y=3\\y=4\end{cases}}\)

* Với y = 3 thì x = -3

* Với y = 4 thì x = -4

Vậy phương trình có 2 cặp nghiệm nguyên (x; y) = (-3; 3) ; (-4; 4)

18 tháng 10 2020

Giúp mình bài này với nhé: tìm GTNN của thương của phép chia (4x^5+4x^4+4x^3-x-1):(2x^3+x-1), nhớ là đặt phép chia giùm mình luôn đừng ghi kết quả thôi nhé 

26 tháng 11 2018

Ta thấy \(y^2+2xy+x^2-x^2-7x+12=0\)

\(\Leftrightarrow\left(x+y\right)^2=x^2+7x+12\)

\(\Leftrightarrow\left(x+y\right)^2=\left(x+3\right)\left(x+4\right)\)(1)

\(x,y\varepsilonℤ\)nên\(\left(x+y\right)^2\)là số chính phương và \(\left(x+3\right)\left(x+4\right)\)là tích 2 số nguyên liên tiếp (2)

Từ (1) và (2) ta được

\(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(x+3\right)\left(x+4\right)=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x+y=0\\\orbr{\begin{cases}x+3=0\\x+4=0\end{cases}}\end{cases}}\)

Giải ra tìm được x,y

\(\hept{\begin{cases}\left(x+y\right)^2=0\\\orbr{\begin{cases}x+3=0\\x+4=0\end{cases}}\end{cases}}\)

29 tháng 11 2019

ta có:\(y^2+2xy-7x-12=0\)

\(\Leftrightarrow y^2+2xy+x^2=x^2+7x+12\)

\(\Leftrightarrow\left(x+y\right)^2=\left(x+3\right)\left(x+4\right)\)*

 Vế trái của * là số chính phương, vế phải là tích của 2 số liên tiếp nên phải có 1 số bằng 1

Do đó:\(\orbr{\begin{cases}x+3=0\\x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}y=3\\y=4\end{cases}}}\)

Vậy phương trình có 2 nghiệm là (x;y)=(-3;3),(-4;4)

14 tháng 9 2016

a)xy-7x-2y=15

=>x(y-7)-2y=15

=>x(y-7)-2y+14=15+14

=>x(y-7)-2(y-7)=29

=>(x-2)(y-7)=29

=>x-2 và y-7 thuộc Ư(29)={1;-1;29;-29}

Với x-2=1 =>x=3 <=> y-7=29 =>y=36

Với x-2=-1 =>x=1 <=>y-7=-29 =>y=-22

Với x-2=29 =>x=31 <=>y-7=1 =>y=8

Với x-2=-29 =>x=-27 <=>y-7=-1 =>y=6

Vậy .....

 

 

14 tháng 9 2016

b)x2+5x-2xy-10y-11=0

<=>x2+5x-2xy-10y=11

<=>(x2-2xy)+(5x-10y)=11

<=>x(x-2y)+5(x-2y)=11

<=>(x+5)(x-2y)=11

=>x+5 và x-2y thuộc Ư(11)={1;-1;11;-11}

Xét x+5=1 =>x=-4 <=>x-2y=11 <=>-4-2y=11 =>y=\(-7\frac{1}{2}\left(loai\right)\)

Xét x+5=11 =>x=6 <=>x-2y=1 <=>6-2y=1 =>y=\(2\frac{1}{2}\left(loai\right)\)

Xét x+5=-1 =>x=-6 <=>-6-2y=-11 =>y=\(2\frac{1}{2}\left(loai\right)\)

Xét x+5=-11 =>x=-16 <=>-16-2y=-11 =>y=\(-2\frac{1}{2}\left(loai\right)\)

Vậy ko có giá trị x,y nguyên nào thỏa mãn

 

5 tháng 6 2017

\(2x^2+7x+7y+2xy+y^2+12=0\)

\(\Leftrightarrow\left(x^2+y^2+4+2\left(xy+2x+2y\right)\right)+3\left(x+y+2\right)+2=-x^2\)

\(\Leftrightarrow\left(x+y+2\right)^2+3\left(x+y+2\right)+2=-x^2\)

\(\Leftrightarrow P^2+3P+2=-x^2\le0\)

\(\Leftrightarrow-2\le P\le-1\)

4 tháng 6 2017

sorry , em lớp 6 , hu hu 

=>7x+y(2x-3)=7

=>7x-10,5+y(2x-3)=7-10,5

=>(x-1,5)(2y+7)=-3,5

=>(2x-3)(2y+7)=-7

=>\(\left(2x-3;2y+7\right)\in\left\{\left(1;-7\right);\left(-7;1\right);\left(-1;7\right);\left(7;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(2;-7\right);\left(-2;-3\right);\left(1;0\right);\left(5;-4\right)\right\}\)