K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 4 2021

\(\Leftrightarrow5\left(x^4+2x^2+1\right)+2\left(y^6+2y^3+1\right)=13\)

\(\Leftrightarrow5\left(x^2+1\right)^2+2\left(y^3+1\right)^2=13\)

\(\Leftrightarrow\left(x^2+1\right)^2=\dfrac{13-2\left(y^3+1\right)^2}{5}\le\dfrac{13}{5}< 4\)

\(\Rightarrow x^2+1< 2\Rightarrow x^2< 1\)

\(\Leftrightarrow x=0\)

\(\Rightarrow y^6+2y^3-3=0\Rightarrow\left[{}\begin{matrix}y^3=1\Rightarrow y=1\\y^3=-3\left(ktm\right)\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(0;1\right)\)

19 tháng 8 2021

Vì sao 13/5 < 4 ạ?

5 tháng 11 2019

Có: \(5x^4+10x^2+2y^6+4y^3-6=0\)

<=> \(5\left(x^4+2x^2+1\right)+2\left(y^6+2y^3+1\right)=13\)

<=> \(5\left(x^2+1\right)^2+2\left(y^3+1\right)^2=13\)

Vì x, y nguyên => \(\left(x^2+1\right)^2;\left(x^3+1\right)^2\)là số chính phương

=>  \(x^2+1=1\)

và  \(y^3+1=2\)

Khi đó: \(\hept{\begin{cases}x=0\\y=1\end{cases}}\)thử lại thỏa mãn.

18 tháng 8 2023

\(5x^4+10x^2+2y^6+4y^3-6=0\)

\(\Leftrightarrow5x^4+10x^2+5+2y^6+4y^3+2-7-6=0\)

\(\Leftrightarrow5\left(x^4+2x^2+1\right)+2\left(y^6+2y^3+1\right)=13\)

\(\Leftrightarrow5\left(x^2+1\right)^2+2\left(y^3+1\right)^2=13\)

mà \(\left\{{}\begin{matrix}\left(x^2+1\right)^2\ge0,\forall x\inℤ\\\left(y^3+1\right)^2\ge0,\forall y\inℤ\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+1=1\\y^3+1=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^3=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\) thỏa mãn yêu cầu của đề bài.

4 tháng 7 2016

Bài 1: 

PT \(5x^2+10x+5+2y^2+4y+2=13\Leftrightarrow5\left(x+1\right)^2+2\left(y+1\right)^2=13.\)(1)

\(\Rightarrow5\left(x+1\right)^2=13-2\left(y+1\right)^2\le13\forall y\)

Do x nguyên nên (x+1)2 chỉ có thể bằng 0 hoặc 1.

  • Nếu (x+1)= 0 thì 2(y+1)2 = 13 => không có y nguyên
  • Nếu (x+1)= 1 => x = 0 hoặc -2; thì 2(y+1)2 = 8 => \(y+1=\orbr{\begin{cases}2\\-2\end{cases}\Rightarrow y=\orbr{\begin{cases}1\\-3\end{cases}}}\)

PT có 4 nghiệm nguyên là (x=0;y=1) ; (x=0;y=-3) ; (x=-2;y=1) ; (x=-2;y=-3) .

4 tháng 7 2016

Mình viết mấy lần đều bị treo màn hình khi nhập công thức chăc vì dài quá.

Mình hướng dẫn thôi. Bạn tự làm vậy.

1./ Viết: \(A=\sqrt{3}\sqrt{2-\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}.\)

2./ Bình phương A. Sau khi biến đổi được:

\(A^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3}\sqrt{2-\sqrt{3}}\)

\(\Rightarrow A^2-8=-2\left(\sqrt{2+\sqrt{3}}+\sqrt{3}\sqrt{2-\sqrt{3}}\right).\)

3./ Bình phương lần nữa được:

\(\left(A^2-8\right)^2=32\)

Nên A là nghiệm của PT đã cho.

28 tháng 9 2021

\(a,\Leftrightarrow\left\{{}\begin{matrix}5x+15y=-10\\5x-4y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}19y=-21\\5x-4y=11\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{21}{19}\\5x-4\left(-\dfrac{21}{19}\right)=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{25}{19}\\y=-\dfrac{21}{19}\end{matrix}\right.\)

\(c,\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\10x-5y=-40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\13x=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\\ d,\Leftrightarrow\left\{{}\begin{matrix}5x-10y=-30\\5x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-3y=5\\-7y=-35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=5\end{matrix}\right.\\ e,\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\2\left(x+y\right)+4\left(x-y\right)=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=6\\2\left(x+y\right)+3\cdot6=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=6\\x+y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{13}{2}\end{matrix}\right.\)

 

27 tháng 11 2021

\(\left\{{}\begin{matrix}x-2y=-3\\5x+4y=6\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2y-3\\5\left(2y-3\right)+4y=6\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2y-3\\10y-15+4y=6\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2y-3\\14y=21\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2.\dfrac{3}{2}-3\\y=\dfrac{3}{2}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{3}{2}\end{matrix}\right.\)

NV
1 tháng 7 2021

a.

\(\Leftrightarrow\left\{{}\begin{matrix}3x-2\ge0\\3x^2-17x+4=\left(3x-2\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\3x^2-17x+4=9x^2-12x+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\6x^2+5x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\left[{}\begin{matrix}x=0< \dfrac{2}{3}\left(loại\right)\\x=-\dfrac{5}{6}< \dfrac{2}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy pt đã cho vô nghiệm

NV
1 tháng 7 2021

b.

ĐKXĐ: \(\left[{}\begin{matrix}x\ge4\\x\le1\end{matrix}\right.\)

Đặt \(\sqrt{x^2-5x+4}=t\ge0\Leftrightarrow x^2-5x=t^2-4\)

\(\Rightarrow2x^2-10x=2t^2-8\)

Phương trình trở thành:

\(2t^2-8-3t+6=0\)

\(\Leftrightarrow2t^2-3t-2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-\dfrac{1}{2}< 0\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-5x+4}=2\)

\(\Leftrightarrow x^2-5x=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)

30 tháng 12 2018

a) \(x^3-2x^2-5x+6=0\)

\(x^3-x^2-x^2+x-6x+6=0\)

\(x^2\left(x-1\right)-x\left(x-1\right)-6\left(x-1\right)=0\)

\(\left(x-1\right)\left(x^2-x-6\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x^2-x-6=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x^2-2x+3x-6=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\\left(x+3\right)\left(x-2\right)=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=\left\{2;-3\right\}\end{cases}}\)

30 tháng 12 2018

\(a,x^3-2x^2-5x+6=0\)

\(\Leftrightarrow\left(x^3-x^2\right)-\left(x^2-x\right)-\left(6x-6\right)=0\)

\(\Leftrightarrow x^2\left(x-1\right)-x\left(x-1\right)-6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-x-6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(x^2-3x\right)+\left(2x-6\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[x\left(x-3\right)+2\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow x-1=0\left(h\right)x+2=0\left(h\right)x-3=0\)

\(\Leftrightarrow x=1\left(h\right)x=-2\left(h\right)x=3\)

Vậy \(x\in\left\{-2;1;3\right\}\)

P/S: (h) là hoặc nhé