Cho a=101! Chứng minh :
a)a+2 là hợp số
b)a+3 là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. $4\equiv 1\pmod 3$
$\Rightarrow 4^{20}\equiv 1\pmod 3$
$\Rightarrow 4^{20}-1\equiv 0\pmod 3$
Hay $4^{20}-1\vdots 3$. Mà $4^{20}-1>3$ nên nó là hợp số (đpcm)
b.
$1000001=10^6+1=(10^2)^3+1=(10^2+1)(10^4-10^2+1)$ là hợp số (đpcm)
Vì \(a=1\cdot2\cdot3...100\cdot101=2k\Rightarrow a+2=2\left(k+1\right)\)là hợp số (\(k\in N\))
Tương tự có a+2, a+3, a+4, ..., a+101 cũng là hợp số \(\RightarrowĐpcm\)
a) Ta có: a+2
mà a=100
Suy ra: =100+2=102
mà 102=2x3x17
Nếu là hợp số thì có thể phân tích ra thừa số nguyên tố
Vì thế a+2 là hợp số
b) Sai đề rùi bạn ơi. Chứng minh a+3 là số nguyên tố cơ
A=64.6101 +1 =64.(....6) +1 = (...4) + 1 = (....5) chia hết cho 5
=> A là hợp số
Ta có :2^6=64
6^101=...6(6 mũ mấy đều có tận cx là 6)
Thay vào ta có :64x...6+1
=...4+1
=...5\(\Rightarrow\)dãy trên là hợp số vì só nguyên tố ko có tận cx là 5
Vì a = 2.3.4.5. ... .101 nên a chia hết cho các số từ 2 đến 101
100 số tự nhiên liên tiếp a + 2; a + 3;...; a + 101 đều là hợp số vì:
a + 2 ⋮ 2
a + 3 ⋮ 3
....
a + 101 ⋮ 101
a) Ta có:
a + 2 = 100! + 2
=> a + 2 = 1 x 2 x 3 x ... x 100 + 2
=> a + 2 = 2 x ( 1 x 3 x 4 x ... x 100 + 1 )
=> a + 2 chia hết cho 2
=> a + 2 là hợp số
b) Ta có:
a + 3 = 100! + 3
=> a + 3 = 1 x 2 x 3 x ... x 100 + 3
=> a + 3 = 3 x ( 1 x 2 x 4 x ... x 100 + 1 )
=> a + 3 chia hết cho 3
=> a + 3 là hợp số