K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2016

2 ) Ta có :

8p ; 8p + 1 ; 8p + 2 là 3 số tự nhiên liên tiếp => Tích của chúng chia hết cho 3

 mà p là số nguyên tố , 8  không chia hết cho 3 => 8p không chia hết cho 3 '

8p + 1 là số nguyên tố => không chia hết cho 3

=> 8p + 2 chia hết cho 3 ; 8p + 2 = 2 . ( 4p + 1 ) => 4p + 1 chia hết cho 3 hay 4p + 1 là hợp số

20 tháng 2 2016

quên mất nhớ có lời giải nữa nhé!

6 tháng 12 2015

a,Với p bằng 3 ;p-1 =23(thoả mãn)

8p+1=25(loại)

Với p khác 3 suy ra p không chia hết cho 3; 8p không chia hết cho 3

mà( 8p-1) p (8p+1) là tích của 3 số tự nhiên liên tiếp

8p-1 >3 (p thuộc N) suy ra 8p-1 không chia hết cho 3

8p+1 chia hết cho  3

mà 8p+1>3

8p+1 là hợp số (đpcm)

**** mk nha

6 tháng 12 2015

2, 42=3.2.7

P=42k+7

Ta có:

Nếu p=2 ;r=40(t/m)

Nếu p=3 ;r=39(loại)

Nếu p>3,do p là nguyên tố nên ko thể là các ước nguyên dương của 42;r hợp số mà nên r=25

mk làm tiếp nha

 

 

2 tháng 11 2016

 Đặt A = 3^p -2^p -1 
Vì 42p=2.3.7.p mà p là SNT > 7 nên ta cần CM A chia hết cho 2,3,7,p 

Dễ thấy A chia hết cho 2 vì 3^p lẻ còn 2^p chẵn 

p lẻ nên 2^p=2^(2k+1)=(2^2)^k.2 ≡ 2 (mod 3) ⇒ A ≡ 0-2-1 ≡ 0 (mod 3) 

p không chia hết cho 3 nên p=3k+1 hoặc p=3k+2 
    Nếu p=3k+1: Vì p lẻ nên k chẵn ⇒ p=6m+1 ⇒ 3^p=3^(6m+1)=(3^6)^m.3 ≡ 3 (mod 7) còn 2^p=2^(3k+1) ≡ 2 (mod 7) ⇒ A ≡ 3-2-1 ≡ 0 (mod 7) 
    Nếu p=3k+2: Vì p lẻ nên k lẻ ⇒ p=6m+5 ⇒ 3^p=3^(6m+5) ≡ 3^5 ≡ 5 (mod 7) còn 2^p=2^(3k+2) ≡ 4 (mod 7) ⇒ A ≡ 5-4-1 ≡ 0 (mod 7) 
Tóm lại A chia hết cho 7 

Áp dụng định lý Fermat nhỏ ta có: 
3^p ≡ 3 (mod p) 
2^p ≡ 2 (mod p) 
⇒ A ≡ 3-2-1 ≡ 0 (mod p) 

=> đpcm

2 tháng 11 2016

CMR là chứng minh rồi . Mà chứng minh rồi thì làm chi nữa cho nó mệt.

20 tháng 3 2016

Câu 1: 0 nha pn ( đúng chính xá lun ó)

Câu 2: n^2 +2006 là hợp số nha .....!!

20 tháng 12 2015

Gọi d là ước chung của (m,mn+8) vì m lẻ => d lẻ.

Ta có m = kd (vì d là ước của m) => mn + 8 = kdn + 8

--> khd + 8 chia hết cho d mà  khd chia hết cho d => 8 chia hết cho d --> d là ước của 8 do d lẻ => d = 1.

vậy m và mn + 8 là nguyên tố cùng nhau

20 tháng 12 2015

1.n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3