Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(Ư\left(1000001\right)=1;101;9901;1000001\)
\(\Rightarrow1000001\) là hợp số
Bài làm:
a) Ta có: \(4^{10}-1=\left(4^5-1\right)\left(4^5+1\right)\) là hợp số
b) Ta có: \(2^{50}+1\)
\(=\left(2^{25}\right)^2+2.2^{25}+1-2^{26}\)
\(=\left(2^{25}+1\right)^2-\left(2^{13}\right)^2\)
\(=\left(2^{25}-2^{13}+1\right)\left(2^{25}+2^{13}+1\right)\) là hợp số
=> đpcm
Lời giải:
a) Đặt $3^{2014}=a$. Ta có:
\(4^{3^{2014}}-1=4^a-1^a=(4-1)(4^{a-1}+4^{a-2}+....+1)=3(4^{a-1}+4^{a-2}+...+1)\)là hợp số do $3>2; 4^{a-1}+4^{a-2}+...+1>2$
b)
Đặt \(\underbrace{111...1}_{1007}=a\Rightarrow 9a+1=10^{1007}\)
\(\underbrace{111....1}_{2014}+\underbrace{444...4}_{1007}+1=\underbrace{111....1}_{1007}.10^{1007}+\underbrace{111...1}_{1007}+4.\underbrace{111...1}_{1007}+1\)
\(=a(9a+1)+a+4a+1=9a^2+6a+1=(3a+1)^2\) là số chính phương
Ta có đpcm.
P = ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d )
Xét 4 số a,b,c,d khi chia cho 3, tồn tại 2 số có cùng số dư khi chia cho 3, hiệu của chúng chia hết cho 3 nên P chia hết cho 3
Xét 4 số a,b,c,d khi chia cho 4
- nếu tồn tại 2 số cùng số dư khi chia cho 4 thì hiệu của chúng chia hết cho 4, do đó P chia hết cho 4
- nếu 4 số ấy có số dư khác nhau khi chia cho 4 ( là 0,1,2,3 ) thì 2 số có dư là 0 và 2 có hiệu chia hết cho 2, 2 số có số dư là 1 và 3
có hiệu chia hết cho 2. do đó P chia hết cho 4
#)Giải :
Trong 4 số a,b,c,d có ít nhất 2 số có cùng số dư khi chia cho 3
Trong 4 số a,b,c,d : Nếu có 2 số có cùng số dư khi chia cho 4 thì hiệu hai số đó sẽ chia hết cho 4
Nếu không thì 4 số dư theo thứ tự 0,1,2,3 <=> trong 4 số a,b,c,d có hai số chẵn, hai số lẻ
Hiệu của hai số chẵn và hai số lẻ trong 4 số đó chia hết cho 2
=> Tích trên chia hết cho 3 và 4
Mà ƯCLN ( 3; 4 ) = 1 nên ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d ) chia hết cho ( 3 . 4 ) = 12
#~Will~be~Pens~#
Lời giải:
a. $4\equiv 1\pmod 3$
$\Rightarrow 4^{20}\equiv 1\pmod 3$
$\Rightarrow 4^{20}-1\equiv 0\pmod 3$
Hay $4^{20}-1\vdots 3$. Mà $4^{20}-1>3$ nên nó là hợp số (đpcm)
b.
$1000001=10^6+1=(10^2)^3+1=(10^2+1)(10^4-10^2+1)$ là hợp số (đpcm)
Em ko hiểu ạ.