K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Lời giải:

a. $4\equiv 1\pmod 3$

$\Rightarrow 4^{20}\equiv 1\pmod 3$

$\Rightarrow 4^{20}-1\equiv 0\pmod 3$

Hay $4^{20}-1\vdots 3$. Mà $4^{20}-1>3$ nên nó là hợp số (đpcm)

b.

$1000001=10^6+1=(10^2)^3+1=(10^2+1)(10^4-10^2+1)$ là hợp số (đpcm)

22 tháng 8 2021

Em ko hiểu ạ.

 

24 tháng 8 2019

\(Ư\left(1000001\right)=1;101;9901;1000001\)

\(\Rightarrow1000001\) là hợp số

28 tháng 8 2020

Bài làm:

a) Ta có: \(4^{10}-1=\left(4^5-1\right)\left(4^5+1\right)\) là hợp số

b) Ta có: \(2^{50}+1\)

\(=\left(2^{25}\right)^2+2.2^{25}+1-2^{26}\)

\(=\left(2^{25}+1\right)^2-\left(2^{13}\right)^2\)

\(=\left(2^{25}-2^{13}+1\right)\left(2^{25}+2^{13}+1\right)\) là hợp số

=> đpcm

AH
Akai Haruma
Giáo viên
30 tháng 9 2019

Lời giải:

a) Đặt $3^{2014}=a$. Ta có:

\(4^{3^{2014}}-1=4^a-1^a=(4-1)(4^{a-1}+4^{a-2}+....+1)=3(4^{a-1}+4^{a-2}+...+1)\)là hợp số do $3>2; 4^{a-1}+4^{a-2}+...+1>2$

b)

Đặt \(\underbrace{111...1}_{1007}=a\Rightarrow 9a+1=10^{1007}\)

\(\underbrace{111....1}_{2014}+\underbrace{444...4}_{1007}+1=\underbrace{111....1}_{1007}.10^{1007}+\underbrace{111...1}_{1007}+4.\underbrace{111...1}_{1007}+1\)

\(=a(9a+1)+a+4a+1=9a^2+6a+1=(3a+1)^2\) là số chính phương

Ta có đpcm.

2 tháng 6 2019

P = ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d )

Xét 4 số a,b,c,d khi chia cho 3, tồn tại 2 số có cùng số dư khi chia cho 3, hiệu của chúng chia hết cho 3 nên P chia hết cho 3

Xét 4 số a,b,c,d khi chia cho 4

- nếu tồn tại 2 số cùng số dư khi chia cho 4 thì hiệu của chúng chia hết cho 4, do đó P chia hết cho 4

- nếu 4 số ấy có số dư khác nhau khi chia cho 4 ( là 0,1,2,3 ) thì 2 số có dư là 0 và 2 có hiệu chia hết cho 2, 2 số có số dư là 1 và 3

có hiệu chia hết cho 2. do đó P chia hết cho 4

2 tháng 6 2019

#)Giải : 

Trong 4 số a,b,c,d có ít nhất 2 số có cùng số dư khi chia cho 3

Trong 4 số a,b,c,d : Nếu có 2 số có cùng số dư khi chia cho 4 thì hiệu hai số đó sẽ chia hết cho 4 

Nếu không thì 4 số dư theo thứ tự 0,1,2,3 <=> trong 4 số a,b,c,d có hai số chẵn, hai số lẻ 

Hiệu của hai số chẵn và hai số lẻ trong 4 số đó chia hết cho 2 

=> Tích trên chia hết cho 3 và 4 

Mà ƯCLN ( 3; 4 ) = 1 nên ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d ) chia hết cho ( 3 . 4 ) = 12 

                           #~Will~be~Pens~#

k mk đi rùi mk giải cho

9 tháng 8 2016

giải đi rồi mình kick cho =='