K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2015

Ta có: m/n=1+1/2+1/3+...+1/1998

              =(1+1/1998)+(1/2+1/1997)+...+(1/999+1/1000)

             =1999/1.1998+1999/2.1997+...1999/999.100

  Quy đồng phân số,ta chọn MC:1.2.3...1997.1998

Gọi các thừa số phụ tương ứng là a1,a2, ...a999

m/n=1999(a1+a2+a3+...+a999)/1.2.3....1997.1998

Do 1999 là số nguyên tố . Sau khi rút gọn vẫn còn thừa số 1999 =>m chia hết 1999

13 tháng 2 2020

cam on nha

2 tháng 7 2015

m/n=1+1/2+1/3+...+1/1998

=>m/n=(1+1/1998)+(1/2+1/1997)+...+(1/999+1/1000)

=>m/n=1999/1.1998+1999/2.19997+...+1999/999.1000

Quy đồng mẫu số các phân số ta chọn mẫu số chung là: 2.3.4.....1997.1998

gọi các thừa số phụ lần lượt là:k1;k2;k3;.....;k999

ta có m/n=1999.(k1+k2+k3+...+k999)/2.3.4.....1997.1998

ta thấy m là số chia hết cho 1999 mà 1999 là số nguyên tố và mẫu số không chứa thừa số nguyên tố 1999 nên khi rút gọn phân số đến tối giản thì m vẫn luôn chia hết cho 1999

 

 

AH
Akai Haruma
Giáo viên
19 tháng 10

Bài 1:

a. $2x-10-[3x-14-(4-5x)-2x]=2$

$2x-10-3x+14+(4-5x)+2x=2$

$-x-10+14+4-5x+2x=2$

$-4x+8=2$

$-4x=-6$

$x=\frac{-6}{-4}=\frac{3}{2}$

b. Đề sai. Bạn xem lại. 

c.

$|x-3|=|2x+1|$

$\Rightarrow x-3=2x+1$ hoặc $x-3=-(2x+1)$

$\Rightarrow x=-4$ hoặc $x=\frac{2}{3}$

AH
Akai Haruma
Giáo viên
19 tháng 10

Bài 2:

a. Gọi 3 số nguyên liên tiếp là $a, a+1, a+2$

Ta có:

$a+a+1+a+2=3a+3=3(a+1)\vdots 3$ (đpcm)

b. Gọi 5 số nguyên liên tiếp là $a, a+1, a+2, a+3, a+4$

Ta có:

$a+(a+1)+(a+2)+(a+3)+(a+4)=5a+10=5(a+2)\vdots 5$ (đpcm)

c.

Tổng quát: Tổng của $n$ số nguyên liên tiếp chia hết cho $n$. với $n$ lẻ.

Thật vậy, gọi $n$ số nguyên liên tiếp là $a, a+1, a+2, ...., a+n-1$

Tổng của $n$ số nguyên liên tiếp là:

$a+(a+1)+(a+2)+....+(a+n-1)$

$=na+(1+2+3+....+n-1)$
$=na+\frac{n(n-1)}{2}$

$=n[a+\frac{n-1}{2}]$

Vì $n$ lẻ nên $\frac{n-1}{2}$ nguyên

$\Rightarrow a+\frac{n-1}{2}$ nguyên

$\Rightarrow a+(a+1)+....+(a+n-1)=n[a+\frac{n-1}{2}]\vdots n$

 

30 tháng 6 2018

A) Gọi số dư của hai số đó là N ( N khác 0 ; N nhỏ hơn 7 )

    Gọi 2 số đó là 7A và 7B ( A , B khác 0 ; A>B )

Ta có : ( 7A + N ) : 7 ( dư N )

           ( 7B + N ) : 7 ( dư N )

=> ( 7A + N ) - ( 7B + N ) 

=  7A - 7B

= 7 . ( A - B ) chia hết cho 7

Vậy 2 số khi chia cho 7 có cùng số dư thì hiệu của chúng chia hết cho 7 .

B) Theo đề ta có : 3 chỉ có 2 số dư là 1 hoặc 2

    Gọi 2 số đó là 3k+1 và 3h+2 

Ta có : 3k+1 : 3 ( dư 1 )

            3h+2 : 3 ( dư 2 )

=> ( 3k+1 ) + ( 3h+2 )

= 3k+ 3h + 3

= 3 . ( k + h + 1 )

Vậy 2 số không chia hết cho 3 mà có số dư khác nhau thì tổng của chúng chia hết cho 3

Đọc thì nhớ tk nhá