Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số chia 7 có dư là \(7k+a;7q+a\left(p,q,a\in N;a\le7\right)\)
Ta có \(7k+a-\left(7q+a\right)=7k-7q=7\left(k-q\right)⋮7\)
Vậy ...
Gọi \(2\) số đề bài cho là \(7m+k\) và \(7.n+k\)
Hiệu của chúng là: \(\left(7.m+k\right)-\left(7.n+k\right)\)
\(=7.m+k-7.n-k\)
\(=7.m-7.n\)
\(7.\left(m-n\right)⋮7\)
Chứng tỏ nếu 2 số khi chia cho 7 có cùng số dư thì hiệu của chúng chia hết cho 7
Gọi 2 số đó là a và b và d là số dư khi chia a cho 7 và chia b cho 7
\(\Rightarrow\left\{{}\begin{matrix}a=7k+d\\b=7n+d\end{matrix}\right.\) \(\left(k,n\in Z\right)\)
\(\Rightarrow a-b=7k+d-7n-d=7\left(k-n\right)⋮7\left(đpcm\right)\)
2 Số không chia hết cho 3 thì có dư là 1 và 2
Gọi 2 số đó là 3k+1 và 3k+2 (k\(\in\)N)
Tổng 2 số đó là: 3k+1 + 3k+2 = 3k + 3k + 3 = 3(2k+1) chia hết cho 3
Vậy nếu 2 số tự nhiên ko chia hết cho 3 mà khi chia cho 3 có số dư khác nhau thì tổng của chúng chia hết cho 3
Nhấn đúng cho mk nha!!!!!!!!!!
Sửa lại chỗ ghi nhầm :
2 số không chia hết cho 3 mà có số dư khác nhau ⇒ một số chia 3 dư 1 và một số chia 3 dư 2.
⇒ một số có dạng 3m + 1 và một số có dạng 3n + 2 (m,n ∈ N)
Tổng của chúng là 3m + 1 + 3m + 2 = 3m + 3n + 3 = 3.(m + n + 1) chia hết cho 3 (đpcm).
Ta có: số nào ko chia hết cho 3 thì có 2 số dư là 1 và 2
=> 2 số ko chia hết cho 3 mà có 2 số dư khác nhau thì các số dư cũng là 1 và 2
Gọi 2 số đó là : n+1 và n+2 (n chia hết cho 3 và n thuộc N)
Tổng của 2 số đó là: n+1 + n+2 = 2n + 3
Mà 2n chia hết cho 3 (vì n chia hết cho 3) và 3 chia hết cho 3
=> n+1 + n+2 chia hết ch o3
=> Nếu 2 số không chia hết cho 3 mà có số dư khác nhau thì tổng của chúng chia hết cho 3
gọi a và b là hai số có cùng số dư là r khi chia cho 7 (giả sử a > hoặc bằng b)
ta có:a=7m+r,b=7n+r(m,m thuộc N)
khi đó a-b=(7m+r)-(7n-r)=7m-7n chia hết cho 7
Gọi a và b là 2 số có cùng số dư khi chia cho 7 (giả sử a\(\ge\)b)
Ta có a=7m +r ; b=7n +r (m ; n \(\in\)N)
Khi đó a-b = ( 7m - r ) - ( 7n - r ) = 7m - 7n \(⋮\)7 (điều phải chứng minh)
A) Gọi số dư của hai số đó là N ( N khác 0 ; N nhỏ hơn 7 )
Gọi 2 số đó là 7A và 7B ( A , B khác 0 ; A>B )
Ta có : ( 7A + N ) : 7 ( dư N )
( 7B + N ) : 7 ( dư N )
=> ( 7A + N ) - ( 7B + N )
= 7A - 7B
= 7 . ( A - B ) chia hết cho 7
Vậy 2 số khi chia cho 7 có cùng số dư thì hiệu của chúng chia hết cho 7 .
B) Theo đề ta có : 3 chỉ có 2 số dư là 1 hoặc 2
Gọi 2 số đó là 3k+1 và 3h+2
Ta có : 3k+1 : 3 ( dư 1 )
3h+2 : 3 ( dư 2 )
=> ( 3k+1 ) + ( 3h+2 )
= 3k+ 3h + 3
= 3 . ( k + h + 1 )
Vậy 2 số không chia hết cho 3 mà có số dư khác nhau thì tổng của chúng chia hết cho 3
Đọc thì nhớ tk nhá