K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chứng minh rằng:                                                                                                                                                                              A=7+7^2+7^3+7^4+7^5+7^6 chia hết cho 8                                                                                                                                          B=2+2^2+2^3+...2^99+2^100 chia hết cho 3                                                                                    ...
Đọc tiếp

Chứng minh rằng:                                                                                                                                                                              A=7+7^2+7^3+7^4+7^5+7^6 chia hết cho 8                                                                                                                                          B=2+2^2+2^3+...2^99+2^100 chia hết cho 3                                                                                                                                         Mk cần gấp lắm ai giúp mk vs mk tik và kb cho đi mak!!!Giúp mk nha!!

1
14 tháng 11 2016

ta có

 A=(7+7^2)+(7^3+7^4)+(7^5+7^6)

A=56+7^3.56+7^5.56

A=7.8.(1+7^3+7^5) chia hết cho 8

B=(2+2^2)+...+(2^99+2^100)

B=2.3+...+2^99.3chia hết cho 3 .k và làm bạn nhé 

21 tháng 10 2021

giúp tớ với

17 tháng 12 2021

a)

A=1+4+42+...+459A=1+4+42+...+459

A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)

A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)

A=21+43.21+...+447.21A=21+43.21+...+447.21

A=21(1+43+...+447)A=21(1+43+...+447)

⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả

\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)

\(=57\left(7+7^4+...+7^{118}\right)⋮57\)

8 tháng 3 2022

\(A=7\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)

\(=57\left(7+...+7^{118}\right)⋮57\)

16 tháng 12 2022

A=7+72+73+...+760

A=(7+72)+(73+74)+(75+76)+...+(759+760)

A= 7(1+7)+73(1+7)+75(1+7)+...+759(1+7)

A= 7.8+73.8+75.8+...+759.8

A= 8(7+73+75+...+759)

vì 8(7+73+75+...+759) ⋮ 8 ⇒ A ⋮ 8

17 tháng 7 2016

B,

\(7S=7^2+7^3+.......+7^{50}\)

\(7S-S=\left(7^2+7^3+.....+7^{49}\right)-\left(7+7^2+........+7^{50}\right)\)

\(\Rightarrow6S=7^{50}-7\)

\(\Rightarrow6S+7=7^{50}-7+7=7^{50}\)

Vậy 6S+7 là lũy thừa của 7

17 tháng 7 2016

a) S = 7 + 72 + 73 + 74 + ... + 748 + 749 ( có 49 số, 49 chia 3 dư 1)

S = 7 + (72 + 73 + 74) + (75 + 76 + 77) + ... + (747 + 748 + 749)

S = 7 + 72.(1 + 7 + 72) + 75.(1 + 7 + 72) + ... + 747.(1 + 7 + 72)

S = 7 + 72.57 + 75.57 + ... + 747.57

S = 7 + 57.(72 + 75 + ... + 747)

S = 7 + 19.3.(72 + 75 + ... + 747)

S - 7 = 19.3.(72 + 75 + ... + 747) chia hết cho 19

=> đpcm

b) S = 7 + 72 + 73 + ... + 748 + 749

7S = 72 + 73 + 74 + ... + 749 + 750

7S - S = 750 - 7 = 6S

6S + 7 = 750 là lũy thừa của 7

=> đpcm

Đề bài bn chép sai, mk sửa lại rùi đó

12 tháng 10 2014

\(\frac{\text{(a+1)[a(a-1)-(a+3)(a+2)]}}{a+1}\)

ta có:

(a+1).a.(a-1) chia hết cho 6

(a+1).(a+3).a+2) chia hết cho 6.

(3 số tự nhiên liên kề thì chia hết cho 6);

suy ra : a(a-1)-(a+3)(a+2) chia hết cho 6

26 tháng 12 2014

a)Ta có:\(a\left(a-1\right)-\left(a+2\right)\left(a+3\right)=a^2-a-a^2-5a-6=-6a-6\) chia hết cho 6

Câu b) tương tự.

22 tháng 11 2021

a/ 

\(\overline{aba}=101.a+10b=98a+3a+7b+3b=\)

\(=\left(98a+7b\right)+3\left(a+b\right)\)

\(98a+7b⋮7;\left(a+b\right)⋮7\Rightarrow3\left(a+b\right)⋮7\)

\(\Rightarrow\overline{abc}=\left(98a+7b\right)+3\left(a+b\right)⋮7\)

b/ xem lại đề bài

3 tháng 11

`A = 1 + 2 + 2^2 + 2^3 + ... + 2^41` $\\$

`2A = 2 + 2^2 + 2^3 + ... + 2^42`$\\$

`2A - A = (2 + 2^2 + 2^3 + ... + 2^42) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$

`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^41`$\\$

`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^41 - 2^41) + 2^42`$\\$

`2A - A = - 1 + 2^42`$\\$

hay `A = -1 + 2^42`$\\$

3 tháng 11

`A = 1 + 2 + 2^2 + 2^3 + ... + 2^{41}` $\\$

`2A = 2 + 2^2 + 2^3 + ... + 2^{42}`$\\$

`2A - A = (2 + 2^2 + 2^3 + ... + 2^{42}) - (1 + 2 + 2^2 + 2^3 + ... + 2^{41})` $\\$

`2A - A = 2 + 2^2 + 2^3 + ... + 2^{42} - 1 - 2 - 2^2 - 2^3 - ... - 2^{41}`$\\$

`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^{41} - 2^{41}) + 2^42`$\\$

`2A - A = - 1 + 2^{42}`$\\$

hay `A = -1 + 2^{42}`$\\$