tìm a, b để A chia hết cho B
A =x 3 + 12x - 5x2 + a
B = x - 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)(x+5) chia hết cho (x+1)
Ta có:
x+5=(x+1)+4
Vì x+1 chia hết cho x+1=>4 chia hết cho x+1
=>x+1 thuộc{1;2;4}
Ta có bảng:
x+1 | 1 | 2 | 4 |
x | 0 | 1 | 3 |
Thử lại: đúng
Vậy x thuộc{0;1;3}
a) 12 và 15 chia hết cho 3 nên x sẽ là số chia hết cho 3.
\(x=\left\{x\in\mathbb{N}|x=x\cdot3\right\}\)
b) Tương tự, 12 và 15 chia hết cho 3 nên x sẽ là số không chia hết cho 3.
\(x=\left\{x\inℕ^∗|x⋮̸3\right\}\)
Bài 3:
Ta có: \(2n^2+n-7⋮n-2\)
\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
Tìm số tự nhiên x để :
a, 12x chia hết cho ( 7 - 3x )
b, \(\left(x^2+2\right)\) chia hết cho ( 3 - x )
4. x + 16 chia hết cho x + 1
Ta có
x + 16 = ( x + 1 ) + 15
Mà x + 1 chia hết cho 1
=> 15 phải chia hết cho x + 1
=> x + 1 thuộc Ư(15)
Ư(15) = { 1 ; 15 ; 3 ; 5 }
TH1 : x + 1 = 1 => x = 1 - 1 = 0
TH2 : x + 1 = 15 => x = 15 - 1 = 14
TH3 : x + 1 = 3 => x = 3 - 1 = 2
TH4 : x + 1 = 5 => x = 5 - 1 = 4
Vậy x = 0 ; 14 ; 4 ; 2
1
a . Để A chia hết cho 9 thì các số hạng của nó phải chia hết cho 9
Mà 963 , 2439 , 361 chia hết cho 9
=> x cũng phải chia hết cho 9
Vậy điều kiện để A chia hết cho 9 là x chia hết cho 9
Và ngược lại để A ko chia hết cho 9 thì x không chia hết cho 9
b. Tương tự phần trên nha
a: Khi x=-1 thì B=2*(-1)^2+1+1=4
b: Để A chia hết cho B thì
\(2x^3-x^2+x+6x^2-3x+3+a-3⋮2x^2-x+1\)
=>a-3=0
=>a=3
c: Để B=1 thì 2x^2-x=0
=>x=0 hoặc x=1/2
Tự hỏi là có b?
a = -18