K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2016

Theo đề ta có

\(x=2-\sqrt{3}\)

\(\Rightarrow\left(4-x\right)x=\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=1\)

Q = x5 - 3x4 - 3x3 + 6x2 - 20x + 2020

= (x5 - 4x4) + (x4 - 4x3) + (x3 - 4x2) + (10x2 - 40x) + 20x + 2020

= - x3 - x2 - x - 10 + 20x + 2020

= (- x3 + 4x2) + ( - 5x2 + 20x) - x + 2010

= x + 5 - x + 2010 = 2015

5 tháng 11 2016

cau tra loi la chinh no

19 tháng 9 2016

\(\frac{x^6-3x^5+3x^4-x^3+2015}{x^6-x^3-3x^2-3x+2015}=\frac{x^6-3x^5+3x^4+3x^3+2015-4x^3}{x^6+3x^3-3x^2-3x+2015-4x^3}=\frac{x^6-3x^3\left(x^2-x-1\right)+2015-4x^3}{6+3x\left(x^2-x-1\right)+2015-4x^3}\)

Theo bài ra: \(x^2-x-1=0\)

\(\frac{x^6-3x^5+3x^4-x^3+2015}{x^6-x^3-3x^2-3x+2015}=\frac{x^6-3x^3\left(x^2-x-1\right)+2015-4x^3}{x^6+3x\left(x^2-x-1\right)+2015-4x^3}=\frac{x^6+2015-4x^3}{x^6+2015-4x^3}=1\)

Vậy:...

19 tháng 9 2016

Mk nhầm đoạn số 6 bạn sửa lại thành x^6 nhé:

\(\frac{x^6-3x^5+3x^4-x^3+2015}{x^6-x^3-3x^2-3x+2015}=\frac{x^6-3x^5+3x^4+3x^3+2015-4x^3}{x^6+3x^3-3x^2-3x+2015-4x^3}=\frac{x^6-3x^3\left(x^2-x-1\right)+2015-4x^3}{x^6+3x\left(x^2-x-1\right)+2015-4x^3}\)

Theo bài ra: \(x^2-x-1=0\)

\(\Rightarrow\frac{x^6-3x^5+3x^4-x^3+2015}{x^6-x^3-3x^2-3x+2015}=\frac{x^6-3x^3\left(x^2-x-1\right)+2015-4x^3}{x^6+3x\left(x^2-x-1\right)+2015-4x^3}=\frac{x^6+2015-4x^3}{x^6+2015-4x^3}=1\)

Vậy:......

NV
12 tháng 9 2021

Đề bài sai nhé, từ giả thiết chỉ xác định được \(x+y=0\Rightarrow y=-x\)

\(\Rightarrow A=4x^2-x^2+x^2+15=4x^2+15\) ko rút gọn được

12 tháng 9 2021

Nguyễn Việt Lâm Giáo viên, bn có thể sửa đề bài cho mk được không ạ??? Cám ơn bn nhiều lắm lắm!!!

21 tháng 7 2018

b) Ta có: \(x+\sqrt{3}=2\Leftrightarrow x-2=-\sqrt{3}\Leftrightarrow\left(x-2\right)^2=3\Leftrightarrow x^2-4x+1=0\)

\(B=x^5-3x^4-3x^3+6x^2-20x+2021\)

\(B=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2016\)

\(B=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2016\)

Thế \(x^2-4x+1=0\)\(\Rightarrow B=2016.\)

17 tháng 11 2021

\(\Leftrightarrow x=2-\sqrt{3}\)

Dễ thấy x là nghiệm của PT \(x^2-4x+1\)

\(H=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2019\\ H=\left(x^2-4x+1\right)\left(x^3+x^2+5\right)+2019\\ H=2019\)

5 tháng 10 2019

Ta có: \(x=2-\sqrt{3}\)\(\Rightarrow2-x=\sqrt{3}\)\(\Rightarrow\left(2-x\right)^2=3\)\(\Rightarrow4-4x+x^2=3\)\(\Rightarrow x^2-4x+1=0\)

Lại có: \(B=x^5-3x^4-3x^3+6x^2-20x+2018\)

\(\Rightarrow B=x^5-4x^4+x^4+x^3-4x^3+5x^2+x^2+20x+5+2013\)

\(\Rightarrow B=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2013\)

\(\Rightarrow B=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2013\)

\(\Rightarrow B=x^3\cdot0+x^2\cdot0+5\cdot0+2013=2013\)

6 tháng 3 2022

( x - 1 )2018 + (y - 2 )2020+(z-3)2022=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)

\(A=\dfrac{1}{9}\left(-x\right)^{2021}y^2z^3=\dfrac{1}{3}\left(-1\right)^{2021}.2^2.3^3=\dfrac{1}{3}.\left(-1\right).4.27=-36\)