\(\sqrt{3}=2\)\(.Tính\) giá trị biểu thức H= 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2021

\(\Leftrightarrow x=2-\sqrt{3}\)

Dễ thấy x là nghiệm của PT \(x^2-4x+1\)

\(H=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2019\\ H=\left(x^2-4x+1\right)\left(x^3+x^2+5\right)+2019\\ H=2019\)

5 tháng 10 2019

Ta có: \(x=2-\sqrt{3}\)\(\Rightarrow2-x=\sqrt{3}\)\(\Rightarrow\left(2-x\right)^2=3\)\(\Rightarrow4-4x+x^2=3\)\(\Rightarrow x^2-4x+1=0\)

Lại có: \(B=x^5-3x^4-3x^3+6x^2-20x+2018\)

\(\Rightarrow B=x^5-4x^4+x^4+x^3-4x^3+5x^2+x^2+20x+5+2013\)

\(\Rightarrow B=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2013\)

\(\Rightarrow B=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2013\)

\(\Rightarrow B=x^3\cdot0+x^2\cdot0+5\cdot0+2013=2013\)

21 tháng 7 2018

b) Ta có: \(x+\sqrt{3}=2\Leftrightarrow x-2=-\sqrt{3}\Leftrightarrow\left(x-2\right)^2=3\Leftrightarrow x^2-4x+1=0\)

\(B=x^5-3x^4-3x^3+6x^2-20x+2021\)

\(B=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2016\)

\(B=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2016\)

Thế \(x^2-4x+1=0\)\(\Rightarrow B=2016.\)

30 tháng 8 2018

Ta có: \(x+\sqrt{3}=2\Leftrightarrow\left(x-2\right)^2=3\Leftrightarrow x^2-4x+1=0\)

\(B=x^5-3x^4-3x^3+6x^2-20x+2022\)

\(B=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2017\)

\(B=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2017\)

\(B=2017\)(Do \(x^2-4x+1=0\))

ĐS: ...

6 tháng 11 2016

Theo đề ta có

\(x=2-\sqrt{3}\)

\(\Rightarrow\left(4-x\right)x=\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=1\)

Q = x5 - 3x4 - 3x3 + 6x2 - 20x + 2020

= (x5 - 4x4) + (x4 - 4x3) + (x3 - 4x2) + (10x2 - 40x) + 20x + 2020

= - x3 - x2 - x - 10 + 20x + 2020

= (- x3 + 4x2) + ( - 5x2 + 20x) - x + 2010

= x + 5 - x + 2010 = 2015

5 tháng 11 2016

cau tra loi la chinh no

25 tháng 10 2020

Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)

\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)

\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)

\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)

\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)

Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình

23 tháng 8 2020

Bài 1: \(x+\sqrt{3}=2\Rightarrow x-2=-\sqrt{3}\Rightarrow\left(x-2\right)^2=3\Rightarrow x^2-4x+1=0\)

\(B=x^5-3x^4-3x^3+6x^2-20x-2022\)

\(=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+5\left(x^2-4x+1\right)+2017\)

\(=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2017\)

\(=2017\)

23 tháng 8 2020

dễ nên mình đặt link câu a cho : https://olm.vn/hoi-dap/detail/189000873419.html

tí mình gửi qua tin nhắn nhé !

Đặt \(A=\sqrt{3+\sqrt{5+2\sqrt{3}}}+\sqrt{3-\sqrt{5+2\sqrt{3}}}\)

\(=6+2\sqrt{9-\left(5+2\sqrt{3}\right)}=6+2\sqrt{3+2\sqrt{3}+1}\)

\(=6+2\left(3+1\right)=6+6+2=14\)

Nên biểu thức tương đương với \(14-\sqrt{3}\)

28 tháng 8 2018

sai đề ak

28 tháng 8 2018

k

2 tháng 9 2020

Đk: x = \(5+2\sqrt{7}\)> 5

Đặt A = \(\sqrt{3x+\sqrt{6x-1}}-\sqrt{3x-\sqrt{6x-1}}\)

A2 = \(\left(\sqrt{3x+\sqrt{6x-1}}-\sqrt{3x-\sqrt{6x-1}}\right)^2\)

A2 = \(3x+\sqrt{6x-1}+3x-\sqrt{6x-1}-2\sqrt{\left(3x+\sqrt{6x-1}\right)\left(3x-\sqrt{6x-1}\right)}\)

A2 = \(6x-2\sqrt{9x^2-6x+1}\)

A2 = \(6x-2\sqrt{\left(3x-1\right)^2}\) (vì x > \(\frac{1}{3}\))

A2 = \(6x-2\left(3x-1\right)\)

A2 = \(6x-6x+2\)

A2 = 2

=> A = \(\sqrt{2}\)

Vậy ....

2 tháng 9 2020

Đặt:    \(A=\sqrt{3x+\sqrt{6x-1}}-\sqrt{3x-\sqrt{6x-1}}\)

=>    \(A^2=3x+\sqrt{6x-1}+3x-\sqrt{6x-1}-2\sqrt{\left(3x+\sqrt{6x-1}\right)\left(3x-\sqrt{6x-1}\right)}\)

=>    \(A^2=6x-2\sqrt{9x^2-6x+1}\)

=>    \(A^2=6x-2\sqrt{\left(3x-1\right)^2}\)

Mà:    \(x=5+2\sqrt{7}\Rightarrow x>\frac{1}{3}\Rightarrow3x>1\Rightarrow3x-1>0\)

=>   \(A^2=6x-2\left(3x-1\right)\)

=>    \(A^2=6x-6x+2=2\)

Mà:    \(\sqrt{3x+\sqrt{6x-1}}>\sqrt{3x-\sqrt{6x-1}}\Rightarrow A>0\)

=>    \(A=\sqrt{2}\)

VẬY    \(A=\sqrt{2}\)