Tìm x,y,z biết:
8. 3x + 3 . 2x+6x = 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a tự làm nhé
b, \(\frac{2x+3}{24}=\frac{3x-1}{32}\)
\(\Leftrightarrow32(2x+3)=24(3x-1)\)
\(\Leftrightarrow64x+96=72x-24\)
\(\Leftrightarrow64x+96-72x=-24\)
\(\Leftrightarrow96-8x=-24\Leftrightarrow x=15\)
7) vì \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)và x-y+z=36
Nên theo tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)=\(\dfrac{x-y+z}{5-6+7}\)=\(\dfrac{36}{6}\)=6
\(\Rightarrow\)x=6.5=30
y=6.6=36
z=6.7=42
vậy x=30,y=36,z=42
\(\frac{8}{x+1}=\frac{16}{y+2}=\frac{24}{z+3}=\frac{16+48-24}{2x+2+3y+6-z-3}=\frac{40}{25}=1,6\)
\(\Rightarrow\) x + 1 = 5; y + 2 = 10; z + 3 = 15
\(\Rightarrow\) x = 4; y = 8; z = 12
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
a: 2x-3y-4z=24
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y-4z}{2\cdot1-3\cdot6-4\cdot3}=\dfrac{24}{-28}=\dfrac{-6}{7}\)
=>x=-6/7; y=-36/7; z=-18/7
b: 6x=10y=15z
=>x/10=y/6=z/4=k
=>x=10k; y=6k; z=4k
x+y-z=90
=>10k+6k-4k=90
=>12k=90
=>k=7,5
=>x=75; y=45; z=30
d: x/4=y/3
=>x/20=y/15
y/5=z/3
=>y/15=z/9
=>x/20=y/15=z/9
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)
=>x=500; y=375; z=225
a) 3x( 2x + 3) -(2x+5)(3x-2)=8
<=> 6x^2+9x-6x^2+4x-15x+10=8
<=> -2x+10=8
<=> -2x= 8-10 = -2
<=> x=1
b) (3x-4)(2x+1)-(6x+5)(x-3)=3
<=> 6x^2+3x-8x-4-6x^2+18x-5x+15=3
<=> -8x+11=3
<=> -8x= -8
<=> x=1
c, 2(3x-1)(2x+5)-6(2x-1)(x+2)=-6
<=> 2(6x^2+15x-2x-5)-6(2x^2+4x-x-2)=6
<=> 2(6x^2+13x-5)-6(2x^2+3x-2)=6
<=> 12x^2+ 26x-10-12x^2-18x+12=6
<=> 8x+2=6
<=> 8x=4
<=> x= 1/2
d, 3xy(x+y)-(x+y)(x^2 +y^2+2xy)+y^3=27
<=> 3x2y+3xy2-(x+y)(x+y)2+y3=27
<=> 3x2y+3xy2-(x+y)3+y3=27
<=> 3x2y +3xy2 -x3-3x2y-3xy2-y3+y3=27
<=> -x3=27
<=> x= \(-\sqrt[3]{27}\)= -3