Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a tự làm nhé
b, \(\frac{2x+3}{24}=\frac{3x-1}{32}\)
\(\Leftrightarrow32(2x+3)=24(3x-1)\)
\(\Leftrightarrow64x+96=72x-24\)
\(\Leftrightarrow64x+96-72x=-24\)
\(\Leftrightarrow96-8x=-24\Leftrightarrow x=15\)
7) vì \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)và x-y+z=36
Nên theo tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)=\(\dfrac{x-y+z}{5-6+7}\)=\(\dfrac{36}{6}\)=6
\(\Rightarrow\)x=6.5=30
y=6.6=36
z=6.7=42
vậy x=30,y=36,z=42
\(\frac{8}{x+1}=\frac{16}{y+2}=\frac{24}{z+3}=\frac{16+48-24}{2x+2+3y+6-z-3}=\frac{40}{25}=1,6\)
\(\Rightarrow\) x + 1 = 5; y + 2 = 10; z + 3 = 15
\(\Rightarrow\) x = 4; y = 8; z = 12
a: 2x-3y-4z=24
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y-4z}{2\cdot1-3\cdot6-4\cdot3}=\dfrac{24}{-28}=\dfrac{-6}{7}\)
=>x=-6/7; y=-36/7; z=-18/7
b: 6x=10y=15z
=>x/10=y/6=z/4=k
=>x=10k; y=6k; z=4k
x+y-z=90
=>10k+6k-4k=90
=>12k=90
=>k=7,5
=>x=75; y=45; z=30
d: x/4=y/3
=>x/20=y/15
y/5=z/3
=>y/15=z/9
=>x/20=y/15=z/9
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)
=>x=500; y=375; z=225
b) Ta có: \(\text{10x=6y=5z}\Rightarrow\frac{10x}{30}=\frac{6y}{30}=\frac{5z}{30}\Leftrightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\) và \(x+y-z=24\)
Áp dụng t/c dãy tỉ số = nhau, ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}=\frac{x+y-z}{3+5-6}=\frac{24}{2}=12\)
Khi đó: \(\frac{x}{3}=12\Rightarrow x=36\)
\(\frac{y}{5}=12\Rightarrow y=60\)
\(\frac{z}{6}=12\Rightarrow z=72\)
Vậy\(x=36\) :\(y=60\) \(z=72\)