K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2022

AH cắt BC tại P.

-Xét △ABC có: 

BM, CN lần lượt là các đường cao (gt).

BM và CN cắt nhau tại H.

\(\Rightarrow\) H là trực tâm của △ABC.

\(\Rightarrow\) AH là đường cao của △ABC.

Mà AH cắt BC tại P (gt).

\(\Rightarrow\) AH⊥BC tại P.

-Xét △BHP và △BCM có:

\(\widehat{CBM}\) là góc chung.

\(\widehat{BPH}=\widehat{BMC}=90^0\)

\(\Rightarrow\)△BHP ∼ △BCM (g-g).

\(\Rightarrow\)\(\dfrac{BH}{BC}=\dfrac{BP}{BM}\) (2 tỉ lệ tương ứng).

\(\Rightarrow BH.BM=BP.BC\) (1)

-Xét △CHP và △CBN có:

\(\widehat{BCN}\) là góc chung.

\(\widehat{CPH}=\widehat{CNB}=90^0\)

\(\Rightarrow\)△CHP ∼ △CBN (g-g).

\(\Rightarrow\)\(\dfrac{CH}{CB}=\dfrac{CP}{CN}\) (2 tỉ lệ tương ứng).

\(\Rightarrow CH.CN=CP.CB\) (2)

-Từ (1), (2) suy ra:

\(BH.BM+CH.CN=BP.BC+CP.BC=BC\left(BP+CP\right)=BC.BC=BC^2\)

Tham khảo

NM
24 tháng 8 2021

undefined

Do G là trọng tâm tam giác nên ta có :

\(\hept{\begin{cases}CG=\frac{2}{3}CN\\BG=\frac{2}{3}BM\end{cases}}\Rightarrow CG>BG\Rightarrow\widehat{GBC}>\widehat{GCB}\)

28 tháng 3 2019

áp dụng t/c đường trung tuyến là xong