Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng BĐT tam giác vào tam giác ABC:
Ta có: AB + AC > BC (1)
Áp dụng BĐT tam giác vào tam giác AMN:
Ta có: AM + AN > MN (2)
Lấy (1) - (2) ta có:
(AB + AC > BC) - (AM + AN > MN)
=> AB + AC - AM - AN > BC - MN
=> (AB - AM) + (AC - AN) > BC - MN
=> MB + NC > BC - MN
=> MB + NC + MN > BC (đpcm)
b) Ta có: AM > BM và AN > CN (đề bài)
Mà: BC < MN + NC + MB (CMT)
=> BC < MN + AM + AN
Mà MN, AM, AN là 3 cạnh của tam giác AMN
=> BC nhỏ hơn chu vi của tam giác AMN (đpcm)
a) Áp dụng BĐT tam giác vào tam giác ABC:
Ta có: AB + AC > BC (1)
Áp dụng BĐT tam giác vào tam giác AMN:
Ta có: AM + AN > MN (2)
Lấy (1) - (2) ta có:
(AB + AC > BC) - (AM + AN > MN)
=> AB + AC - AM - AN > BC - MN
=> (AB - AM) + (AC - AN) > BC - MN
=> MB + NC > BC - MN
=> MB + NC + MN > BC (đpcm)
b) Ta có: AM > BM và AN > CN (đề bài)
Mà: BC < MN + NC + MB (CMT)
=> BC < MN + AM + AN
Mà MN, AM, AN là 3 cạnh của tam giác AMN
=> BC nhỏ hơn chu vi của tam giác AMN (đpcm)
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Nguyễn Thị Ngọc Ánh - Toán lớp 7 - Học toán với OnlineMath
A B C M D E N
E là giao điểm của My và BC
My // CN => ME // AC
=> ^MEB = ^ACB ( đồng vị ) mà ^ACB = ^ABC ( \(\Delta\)ABC cân tại A )
=> ^MEB = ^ABC hay ^MEB = MBE (1)
a) Xét \(\Delta\)DMC và \(\Delta\)NCM có:
MC chung
^DMC = ^NCM ( so le trong )
^DCM = ^NMC ( so le trong )
=> \(\Delta\)DMC = \(\Delta\)NCM => DM = CN (2)
Mặt khác: MB = CN (3)
Từ (2) ; (3) => DM = MB => \(\Delta\)BMD cân (4)
b ) (4) => ^MDB = ^MBD (5)
(5) ; (1) => ^MDB + ^MEB = ^MBD + ^MBE
=> 180 - ^DBE = ^DBE
=> ^DBE = 90 độ
=> \(\Delta\)DBC vuông tại B có DC là cạnh huyền
=> BC < CD