K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi H là tâm của tam giác ABC ( khi đó H là trọng tâm, trực tâm của tam giác ABC).

Do hình chóp S.ABC là hình chóp tam giác đều nên SH ⊥ (ABC)

\(AN=\sqrt{AB^2-BN^2}\) \(=\) \(\sqrt{\left(3a\right)^2-\left(\dfrac{3a}{2}\right)^2}\) \(=\) \(\dfrac{3a\sqrt{3}}{2}\)

Vậy khoảng cách từ S đến (ABC ) là a.

 

9 tháng 6 2019

Giải bài 7 trang 120 sgk Hình học 11 | Để học tốt Toán 11

Gọi H là tâm của tam giác ABC ( khi đó H là trọng tâm, trực tâm của tam giác ABC).

Do hình chóp S.ABC là hình chóp tam giác đều nên SH ⊥ (ABC)

Giải bài 7 trang 120 sgk Hình học 11 | Để học tốt Toán 11

Vậy khoảng cách từ S đến (ABC ) là a.

31 tháng 3 2017

Giải bài 7 trang 120 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 7 trang 120 sgk Hình học 11 | Để học tốt Toán 11

21 tháng 1 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) SG là trục đường tròn ngoại tiếp tam giác đều ABC nên SG ⊥ (ABC). Ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy khoảng cách từ S tới mặt phẳng (ABC) là độ dài của đoạn SG = a

Ta có CG ⊥ AB tại H. Vì GH là đoạn vuông góc chung của AB và SG, do đó 

Giải sách bài tập Toán 11 | Giải sbt Toán 11 

mà Giải sách bài tập Toán 11 | Giải sbt Toán 11 

nên Giải sách bài tập Toán 11 | Giải sbt Toán 11

19 tháng 5 2018

Đáp án B

Gọi H  là tâm của tam giác đều  A B C ⇒ S H ⊥ A B C .

Gọi M  là trung điểm của B C .

Ta có A M = 3 a 3 2 ;   A H = 2 3 A M = a 3 .

Xét tam giác S A H :   S H = S A 2 − A H 2 = a 6 . Vậy h = d S ; A B C = S H = a 6 .

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

5 tháng 11 2018

ĐÁP ÁN: D

5 tháng 1 2017

Đáp án D

Gọi H là trọng tâm tam giác ABC, vì S.ABC là hình chóp tam giác đều nên SH vuông góc với (ABC).

Vậy . Theo bài ra ta có góc  S A H ^ = 60 °

31 tháng 7 2017

27 tháng 7 2017