K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) SG là trục đường tròn ngoại tiếp tam giác đều ABC nên SG ⊥ (ABC). Ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy khoảng cách từ S tới mặt phẳng (ABC) là độ dài của đoạn SG = a

Ta có CG ⊥ AB tại H. Vì GH là đoạn vuông góc chung của AB và SG, do đó 

Giải sách bài tập Toán 11 | Giải sbt Toán 11 

mà Giải sách bài tập Toán 11 | Giải sbt Toán 11 

nên Giải sách bài tập Toán 11 | Giải sbt Toán 11

9 tháng 6 2019

Giải bài 7 trang 120 sgk Hình học 11 | Để học tốt Toán 11

Gọi H là tâm của tam giác ABC ( khi đó H là trọng tâm, trực tâm của tam giác ABC).

Do hình chóp S.ABC là hình chóp tam giác đều nên SH ⊥ (ABC)

Giải bài 7 trang 120 sgk Hình học 11 | Để học tốt Toán 11

Vậy khoảng cách từ S đến (ABC ) là a.

Gọi H là tâm của tam giác ABC ( khi đó H là trọng tâm, trực tâm của tam giác ABC).

Do hình chóp S.ABC là hình chóp tam giác đều nên SH ⊥ (ABC)

\(AN=\sqrt{AB^2-BN^2}\) \(=\) \(\sqrt{\left(3a\right)^2-\left(\dfrac{3a}{2}\right)^2}\) \(=\) \(\dfrac{3a\sqrt{3}}{2}\)

Vậy khoảng cách từ S đến (ABC ) là a.

 

31 tháng 3 2017

Giải bài 7 trang 120 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 7 trang 120 sgk Hình học 11 | Để học tốt Toán 11

Gọi K là trung điểm của SA
=>KM//SC

=>SC//(KMB)

d(SC;BM)=d(S;(KBM))=SK/SA*d(A;(KBM))=d(A;(KBM))

=>ΔABC đều

=>BM vuông góc AC

=>BM vuông góc (SAC)

Kẻ AQ vuông góc KM

=>AQ vuông góc (KMB)

=>d(A;(KMB))=AQ

\(SC=\sqrt{9a^2+4a^2}=a\sqrt{13}\)

KM=1/2SC=a*căn 3/2

=>\(AQ=\dfrac{3\sqrt{13}}{13}\)

=>d(BM;SC)=3*căn 13/13

25 tháng 1 2021

Ta tính được \(AG=a\dfrac{\sqrt{3}}{3}\)

Từ gt ta có:

\(\widehat{\left(SA,\left(ABC\right)\right)}=\widehat{\left(SA,AG\right)}=\widehat{SAG}=60^0\)(Vì S.ABC là chóp tam giác đều nên \(SG\perp\left(ABC\right)\))

Khi đó SG=AG.tan60=a

Gọi M là trung điểm BC \(\Rightarrow GM=a\dfrac{\sqrt{3}}{6}\)

Đặt d(G,(SBC))=x

Áp dụng mô hình "điểm tốt - vẽ hai bước" cho hình chóp S.GBC với G là "điểm tốt" ta có:

\(\dfrac{1}{x^2}=\dfrac{1}{SG^2}+\dfrac{1}{GM^2}=\dfrac{1}{a^2}+\dfrac{1}{\left(a\dfrac{\sqrt{3}}{6}\right)^2}\)

\(\Rightarrow x=\dfrac{a}{\sqrt{13}}\)

25 tháng 1 2021

Mô hình "điểm tốt - vẽ hai bước": Cho hình chóp S.ABC với \(SA\perp\left(ABC\right)\). Kẻ \(AH\perp BC,AK\perp SH\) thì d(A,(SBC))=AK.

CM: Ta có: \(SA\perp\left(ABC\right)\Rightarrow SA\perp AH\)

Mà \(AH\perp BC\Rightarrow BC\perp\left(SAH\right)\)

\(\Rightarrow\left(SBC\right)\perp\left(SAH\right)\) theo giao tuyến SH

Mà \(AK\perp SH,AK\subset\left(SAH\right)\) \(\Rightarrow AK\perp\left(SBC\right)\), dễ dàng suy ra đpcm

 

 

27 tháng 7 2017

23 tháng 3 2018

Đáp án C

5 tháng 11 2018

ĐÁP ÁN: D