K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 9 2023

Lời giải:

Đặt $x=a; \frac{y}{2}=b$ thì bài toán trở thành:

Tìm min $A=\frac{1}{a^2+1}+\frac{1}{b^2+1}+2ab$ với $ab\geq 1$
----------------------------------

Với $ab\geq 1$, ta có BĐT khá quen thuộc:

$\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}$ (để cm BĐT này bạn chỉ cần biến đổi tương đương) 

Áp dụng vào bài và sử dụng thêm BĐT AM-GM:

$A\geq \frac{2}{ab+1}+2ab=\frac{2}{ab+1}+\frac{ab+1}{2}+\frac{3ab-1}{2}$

$\geq 2\sqrt{\frac{2}{ab+1}.\frac{ab+1}{2}}+\frac{3ab-1}{2}$

$=2+\frac{3ab-1}{2}\geq 2+\frac{3.1-1}{2}=3$

Vậy $A_{\min}=3$.

NV
18 tháng 4 2021

\(y\ge xy+1\ge2\sqrt{xy}\Rightarrow\sqrt{\dfrac{y}{x}}\ge2\Rightarrow\dfrac{y}{x}\ge4\)

\(Q=\dfrac{1-\dfrac{2y}{x}+2\left(\dfrac{y}{x}\right)^2}{\dfrac{y}{x}+\left(\dfrac{y}{x}\right)^2}\)

Đặt \(\dfrac{y}{x}=a\ge4\)

\(Q=\dfrac{2a^2-2a+1}{a^2+a}=\dfrac{2a^2-2a+1}{a^2+a}-\dfrac{5}{4}+\dfrac{5}{4}=\dfrac{\left(a-4\right)\left(3a-1\right)}{4\left(a^2+1\right)}+\dfrac{5}{4}\ge\dfrac{5}{4}\)

\(Q_{min}=\dfrac{5}{4}\) khi \(a=4\) hay \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)

1 tháng 9 2018

b,Ap dung bdt cauchy schwarz dang engel ta co

\(B=\frac{x^2}{1}+\frac{y^2}{1}+\frac{z^2}{1}>=\frac{\left(x+y+z\right)^2}{3}=\frac{a^2}{3}\)

xay ra dau = khi x=y=z=a/3

NV
15 tháng 4 2021

\(A=\dfrac{2x^2}{2x+2yz}+\dfrac{2y^2}{2y+2zx}+\dfrac{2z^2}{2z+2xy}+\dfrac{9}{8\left(x^2+y^2+z^2\right)}\)

\(A\ge\dfrac{2x^2}{x^2+1+y^2+z^2}+\dfrac{2y^2}{y^2+1+z^2+x^2}+\dfrac{2z^2}{z^2+1+x^2+y^2}+\dfrac{9}{8\left(x^2+y^2+z^2\right)}\)

\(A\ge\dfrac{2\left(x^2+y^2+z^2\right)}{x^2+y^2+z^2+1}+\dfrac{9}{8\left(x^2+y^2+z^2\right)}\)

Đặt \(x^2+y^2+z^2=a>0\)

\(\Rightarrow A\ge\dfrac{2a}{a+1}+\dfrac{9}{8a}=\dfrac{2a}{a+1}+\dfrac{9}{8a}-\dfrac{15}{8}+\dfrac{15}{8}\)

\(\Rightarrow A\ge\dfrac{\left(a-3\right)^2}{8a\left(a+1\right)}+\dfrac{15}{8}\ge\dfrac{15}{8}\)

\(A_{min}=\dfrac{15}{8}\) khi \(a=3\) hay \(x=y=z=1\)

15 tháng 4 2021

Chỉ em phương pháp múa cột trong tính nguyên hàm với ạ

17 tháng 10 2023

\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{4xy}+4xy+\dfrac{5}{4xy}\)

\(\ge\dfrac{4}{x^2+y^2+2xy}+2\sqrt{\dfrac{1}{4xy}.4xy}+\dfrac{5}{4.\dfrac{\left(x+y\right)^2}{4}}\)

\(\ge\dfrac{4}{1^2}+2+\dfrac{5}{1^2}\) (do \(x+y\le1\))

\(=11\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

Vậy GTNN của A là 11.

3 tháng 6 2021

Áp dụng BĐT cosi:

`1/x^2+1/y^2>=2/(xy)`

`<=>2>=2/(xy)`

`<=>1>=1/(xy)`

`<=>xy>=1`

Dấu "=" xảy ra khi `x=y=1`

14 tháng 8 2020

ta chứng minh A>=2 (1) thật vậy

\(A\ge2\Leftrightarrow\left(x+y+z\right)^2\ge4\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge x^2+y^2+z^2+xyz\)

\(\Leftrightarrow2xy+2yz+2xz\ge xyz\)

từ giả thiết => \(0\le x;y;z\le2\)do đó \(2xy+2yz+2zx\ge2xy\ge xyz\)

vậy (1) được chứng minh. dấu "=" xảy ra khi (x;y;z)=(2;0;0) và các hoán vị

(x+y)^2/x^2+y^2+(x+y)^2/xy>=(x+y)^2/x^2+y^2+xy

Dấu = xảy ra khi (x+y)^2/2xy=x/2y+y/2x+1

=>Min=2